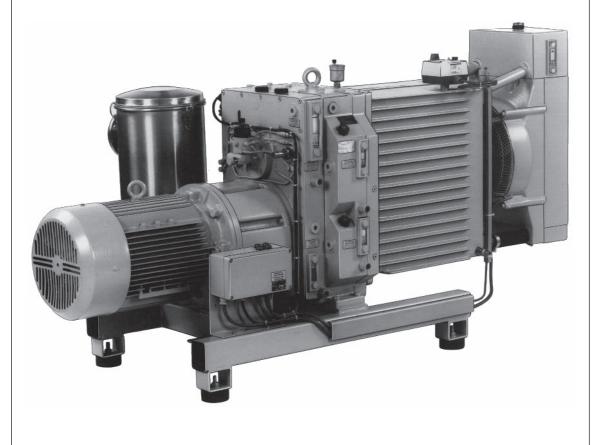
Betriebs- und Serviceanleitung (Reparaturanleitung



Frischölgeschmierte Drehschieber-Vakuumpumpen

V-VWZ

V-VWZ 102 V-VWZ 162 V-VWZ 252 V-VWZ 402

B 117

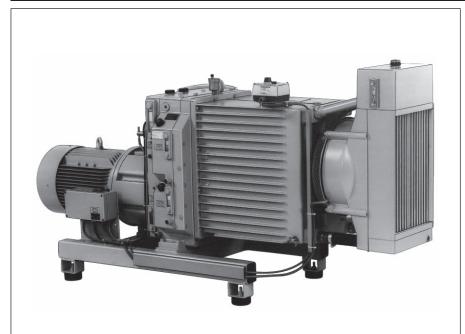
1.4.99

Gardner Denver Schopfheim GmbH

Postfach 1260

79642 SCHOPFHEIM GERMANY

Fon +49 7622 / 392-0


Fax +49 7622 / 392 - 300

e-mail: er.de@

 $\frac{\text{gardnerdenver.com}}{\text{www.gd-elmorietschle.com}}$

Inhaltsvei	zeichnis	Seite
Betriebs-	und Serviceanleitung VWZ 102 – VWZ 402	
1.	Allgemein	3
2.	Eignung	3
3.	Ausführungen und Aufbau	3
3.1	Ausführungen	3
3.2	Aufbau	4
3.3	Datenblätter und Ersatzteillisten	5
3.4	Mögliches Zubehör	5
3.5	Typische Anwendungsgebiete	5
4.	Arbeitsweise	6
4.1	Pumpe	6
4.2	Überströmventil	6
4.3	Ölschmierung	6
4.4	Abdichtungen	6
5.	Installation	6
5.1	Mechanische Installation	6
5.1.1	Aufstellung	6
5.1.2	Saugseite	6
5.1.3	Abluftseite	6
5.2	Elektrische Installation	7
	Allgemein	7
5.2.2	Richtwerte für die Einstellung des Motorschutzrelais	7
5.2.3	Elektrische Anschlüsse für den Motor und Steuerung der Kontroll-Einrichtungen	7
5.2.4	Klemmkastenbelegung umlaufgekühlte Version	7
6.	Betrieb	8
6.1	Kühlflüssigkeit	8
6.1.1	Durchlaufkühlung	8
6.1.2	Umlaufkühlung	8
6.1.3	Kühlwasserüberwachung	8
6.2	Ölschmierung	9
6.3	Ölschmierpumpe	
6.4	Inbetriebnahme	9
7.		9
7. 7.1	Wartung	9
7.1	Öldosierpumpe Ölnebelabscheider	9
7.2.1	Wartung des Ölnebelabscheiders	10 10
8.	<u> </u>	10
	Störungsbehebung	
8.1	Überstrom an der Pumpe	10
8.2	Abfall des Vakuums	10
8.3	Hoher Ölverbrauch	10
-	ranleitung VWZ 102 – VWZ 402	
1.	Demontage und Montage des Kühlergehäuses	11
2.	Wechsel der ND- und HD-Verdichterstufen	11
2.1	Demontage der Verdichterstufen	11
2.2	Montage der Verdichterstufen	11
3.	Demontage und Montage des Antriebs	11
4.	Wechsel der Kupplungsgummi und der Kupplungsbolzen	12
4.1	Am Antrieb	12
4.2	An der Verdichterstufe	12
5.	Reparaturen an der B-Seite der Verdichterstufen	12
5.1	Demontage der Lagerteile und Dichtungen	12
5.2	Montage der Lagerteile und Dichtungen	13
6.	Wechsel der Lamellen	14
7.	Reparaturen an der A-Seite der Verdichterstufen	14
7.1	Demontage der Lagerteile und Dichtungen	14
7.2	Monatage der Lagerteile und Dichtungen	15
8.	Reparaturen am Getriebe	16
8.1	Demontage und Montage des Getriebegehäuses	16
8.2	Wechsel der Stirnräder und Kugellager im Getriebegehäuse	16
8.3	Wechsel der Lager, Wellendichtringe und Dichtungen im Anschlussgehäuse	17
9.	Sonstige Reparaturarbeiten	17
9.1	Reinigung der Saug- und Ablufträume im Anschlussgehäuse	17
9.2	Wechsel der Ventilteile am Überströmventil	17
10.	Vorgehensweise bei einer Einlagerung von ölgeschmierten Drehschieber-Vakuumpumpen	17

BETRIEBS- UND SERVICEANLEITUNG

VWZ 402 mit Umlaufkühlung

1. Allgemein

Alle Pumpen, die aus irgendwelchen Gründen (z.B. Wartung) an uns zurückgeschickt werden, müssen von Schad- und Giftstoffen frei sein. Eine entsprechende Bescheinigung ist vorzulegen!

Ex-Schutz-Sicherheitsvorkehrungen für Gesamt-Anlagen in welchen Vakuumpumpen eingesetzt werden, sind kundenseits zu überprüfen und zu installieren. Die Abstimmung muss mit den örtlichen zuständigen Sicherheitsbehörden (TÜV) oder Gewerbeaufsichtsamt erfolgen.

2. Eignung

a

Die Vakuumpumpen VWZ eignen sich besonders zum Fördern von extrem feuchten und aggressiven Gasen. Die Wasserdampfverträglichkeit ist nahezu unbegrenzt.

Die Umgebungstemperatur und die Ansaugtemperatur darf zwischen 5 und 40°C liegen. Bei Temperaturen außerhalb dieses Bereiches bitten wir um Rücksprache.

Flüssigkeiten und feste Stoffe dürfen nicht abgesaugt werden.

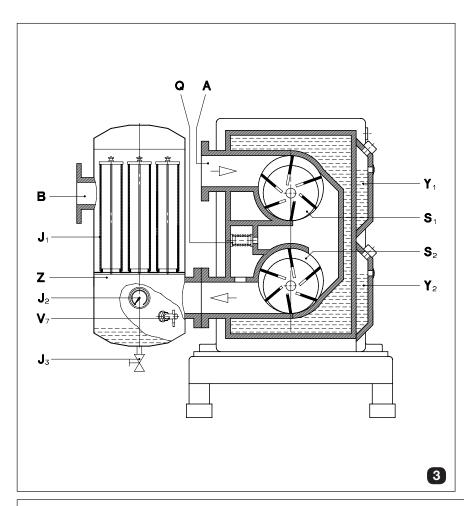
Förderung von explosiven Dämpfen und Gasen nur nach Rücksprache mit Rietschle.

Für den Betrieb in explosionsgefährdeten Räumen müssen Motoren mit entsprechender Ex-Schutz-Klasse eingesetzt werden.

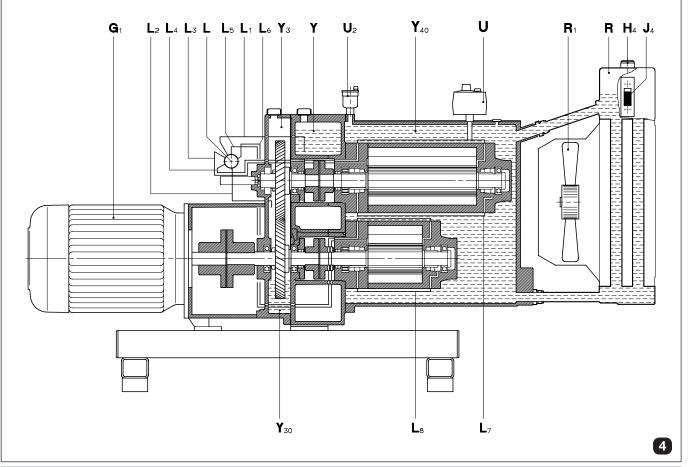
Bei Aufstellung der Vakuumpumpe auf Höhen über 1000 m ü. M. macht sicht eine Leistungsminderung bemerkbar. In diesem Fall bitte wir um Rücksprache.

Bei Anwendungsfällen, wo ein unbeabsichtigtes Abstellen oder ein Ausfall der Vakuumpumpe zu einer Gefährdung von Personen oder Einrichtungen führt, sind entsprechende Sicherheitsmaßnahmen anlagenseits vorzusehen.

3. Ausführungen und Aufbau


3.1 Ausführungen

Die Typenreihe VWZ gibt es in 7 Baugrößen wobei hier nur die Baugrößen mit einem Saugvermögen von 100, 160, 250 und 400 m³/h behandelt werden. Alle Typen erreichen Verdichtungsenddruck von 0,5 mbar (abs.). Die Kühlung erfolgt mittels Flüssigkeit. Dabei unterscheiden wir zwei verschiedene Kühlsysteme:


- 1. Die **Umlaufkühlung** (siehe Bild 1) erfolgt mit Hilfe eines Wasser/Luft-Wärmeaustauschers, der durch einen separat angetriebenen Axialventilator gekühlt wird. Dieser Ventilator wird thermostatabhängig gesteuert.
- 2. Bei der **Durchlaufkühlung** (siehe Bild 2) wird mit einem Kühlwasser-Regulierventil, das in Abhängigkeit der Kühlwasser-Austrittstemperatur gesteuert wird, der Kühlwasserdurchfluss reguliert.

3.2 Aufbau (Bild 3 und 4)

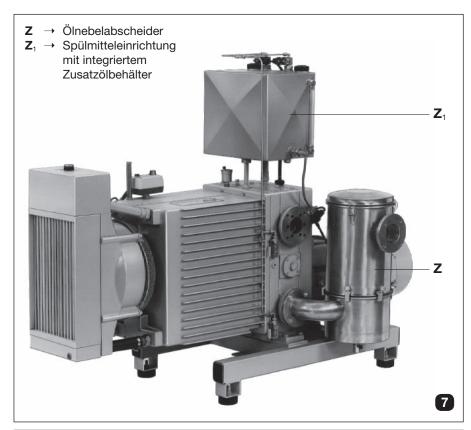
Die VWZ besteht aus der Getriebe-Einheit (\mathbf{Y}_3), den Anschlusseinheiten (\mathbf{S}_1 , \mathbf{S}_2), der Ölversorgung (\mathbf{L}_1 bis \mathbf{L}_8), dem Kühlsystem (\mathbf{R} , \mathbf{Y}_{40} , \mathbf{R}_1) und den Abscheidesystemen (\mathbf{Z} , \mathbf{J}_1 , \mathbf{J}_2 , \mathbf{J}_3) auf der Saug- und Auspuff-Seite (Zubehör). Die Pumpen sind wassergekühlt. Ein eingebautes Überströmventil (\mathbf{Q}) gewährleistet das Einschalten und Betreiben der Pumpe in jedem Druckbereich.

- A Vakuum-Anschluss
- **B** Abluft-Austritt
- G₁ Antrieb
- **H**₄ Kühlwassereinfüllstelle und Sicherheitsventil
- I₄ Kühlwasserkontrolle
- J₁ Filterkerzen für Ölnebelabscheider
- **J**₂ Manometer für Ölnebelabscheider
- J₃ Ablasshahn für Ölnebelabscheider
- L Ölpumpe
- L₁ Ansaugleitung Ölpumpe
- L₂ Leckölleitung Ölpumpe
- L₃ Schmierung A-Seite ND
- L₄ Schmierung B-Seite ND
- L₅ Schmierung A-Seite HD
- L₆ Schmierung B-Seite HD
- L₇ Lagerschmierung ND-Stufe
- L₈ Lagerschmierung HD-Stufe
- Q Überströmventil
- R Wasserkühler
- R₁ Ventilator
- S₁ Niederdruck (ND)-Stufe
- S₂ Hochdruck (HD)-Stufe
- **U** Sicherheits- und Betriebstemperaturthermostat
- U₂ Kühlwasserentlüftung
- V₇ Niveauwächter Kondensat/Öl
- Y Frischölbehälter
- Y₁ Ölbehälter für Lager ND-Stufe
- Y₂ Ölbehälter für Lager HD-Stufe
- Y₃ Getriebe-Einheit
- Y₃₀ Getriebeöl
- Y₄₀ Kühlflüssigkeit
- **Z** Ölnebelabscheider

3.3 Datenblätter und Ersatzteillisten

siehe folgende Datenblätter:

D111 Durchlaufkühlung → VWZ 102 – VWZ 402 (14) D117 Umlaufkühlung → VWZ 102 – VWZ 402 (13)


siehe folgende Ersatzteillisten:

Teile der Grundeinheiten E 117/1

Antrieb und Getriebeeinheit E 117/2

E 117/3 Umlaufkühlung

E 117/4 Ölversorgung E 117/5 Durchlaufkühlung

Z → Ölnebelabscheider **Z**₂ → Vorabscheider Z₂ Z 8

3.4 Mögliches Zubehör

Saugseitig:

- Absperrklappe
- Schnüffelventil
- Feststoff/Flüssigkeitsabscheider
- Kondensator

Ausblasseitig:

- Ölnebelabscheider
- Kondensator

Allgemein:

- Elektrische Steuerung mit Vor- und Nachlauf
- Spülmitteleinrichtung mit integr. Zusatzölbehälter
- Zusatzölbehälter
- Automatischer Kondensatablass

3.5 Typische Anwendungsgebiete

- Vakuum-Trocknung
- Vakuum-Destillation
- Vakuum-Kristallisation
- Vakuum-Entgasung
- Vakuum-Verpackung von feuchten Produkten
- Eindicken von Flüssigkeiten, Säften und Extrakten

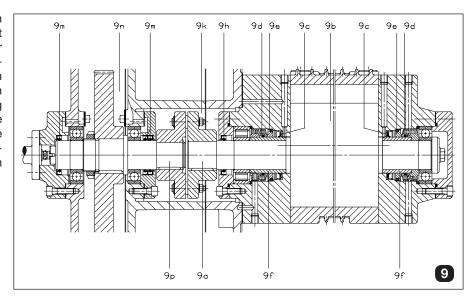
4. Arbeitsweise

4.1 Pumpe

Die Verdichtereinheiten der VWZ arbeiten nach dem Drehschieberprinzip und sind frischölgeschmiert. Ihre Förderrichtung ist von oben nach unten. Deshalb fallen z.B. mitangesaugte Verunreinigungen oder Kondensate nach unten und können leicht abgeführt werden.

4.2 Überströmventil

Zwischen der HD- und ND-Stufe befindet sich ein Überströmventil, das federbelastet ist. Dieses Überströmventil hat dabei folgende Funktion: Beim Einschalten der Pumpe bei atmosphärischem Druck öffnet dieses Ventil auf Grund des entstehenden Überdruckes zwischen ND- und HD-Stufe. Dieser Überdruck wird durch die höhere Saugleistung der ND-Stufe verursacht. Die Gase strömen nun so lange direkt in den Auspuff, bis durch den abfallenden Ansaugdruck die Druckdifferenz zum Öffnen des Überströmventils unterschritten ist. Bei gleicher Saugleistung der ND- und HD-Stufe werden die Gase zweistufig gegen Atmosphäre verdichtet.


4.3 Ölschmierung

Die Lager der ND- und HD-Stufe, sowie die Zahnräder des Getriebes haben eine getrennte Öl-Kontaktschmierung mit jeweils einem eigenen Ölbehälter.

Die Förderräume der Vakuumpumpe werden durch eine genau dosierte Verbrauchsschmierung mit Hilfe einer Öldosierpumpe ständig mit Frischöl versorgt. Dieses Öl kann zusammen mit den von der Pumpe geförderten Medien über ein Abscheidesystem ausgestoßen werden.

4.4 Abdichtung (Bild9)

Die Rotorwelle (9 a) wird vom Innern der Verdichterstufe (9 b) beidseitig mit Wellendichtringen (9 c) abgedichtet. Zur Entlastung dient die anliegende Gleitringdichtung (9 d/9 e), die gemeinsam mit den Wellendichtringen auf auswechselbaren Laufbüchsen (9 f) sitzen. Antriebseitig übernimmt ein Wellendichtring (9 h) die Abdichtung zum Kupplungsraum (9 k). Die Welldichtringe (9 m) verhindern das Austreten von Getriebeöl aus dem Getriebe-Raum (9 n) an der Getriebewelle (9 p).

5. Installation

5.1 Mechanische Installation

5.1.1 Aufstellung (siehe Datenblätter D111 + D117)

Bei betriebswarmer Pumpe können, in Abhängigkeit der eingestellten Betriebstemperatur, die Oberflächentemperaturen (insbesondere das Kühlerwassergehäuse (Y₄)) über 70°C ansteigen, dort ist eine Berührung zu vermeiden.

Die VWZ-Vakuumpumpen arbeiten vibrationsfrei. Eine spezielle Bodenbefestigung ist nicht erforderlich. Beim Aufstellen ist darauf zu achten, dass die Pumpe waagrecht installiert wird, und dass für Kontroll, Wartungs- und Reparaturarbeiten die Ölversorungseinheit, die Verdichtereinheiten, das Überstromventil, der Messwertgeber, der Motor und die Einheiten für das Kühlmedium leicht zugänglich sind.

Kühlluft-Eintritt ist bei (E) und Kühlluft-Austritt ist bei (F), deshalb muss der Luft-Wasser-Kühler mindestens 0,5 m Abstand zur nächsten Wand haben. Im Aufstellungsraum sollte die Umgebungstemperatur 40°C nicht überschreiten.

Wir empfehlen außerdem für Wartungsarbeiten motorseitig ca. 0,3 m und kühlerseitig ca. 0,6 m Wandabstand einzuhalten.

Die VWZ kann nur in horizontaler Einbaulage fehlerfrei betrieben werden.

Bei Aufstellung und Betrieb ist die Unfallverhütungsvorschrift »Verdichter« VBG 16 zu beachten.

5.1.2 Saugseite (siehe Datenblätter D111 + D117)

Saugleitung an (A) anschließen (genormter ISO-Flansch). Diese Rohrleitung sollte so kurz wie möglich sein. Ist sie länger als ca. 5 m, dann muss eine größere Nennweite als die des Pumpenflansches gewählt werden. Beim Verlegen ist darauf zu achten, dass keine Spannungen auf die Pumpe einwirken (eventuell Federungskörper dazwischenbauen). Zum Schutz von Fest- und Flüssigstoffen sollten entsprechende Abscheideorgane saugseitig installiert werden (Zubehör).

Feststoffe größer als 5 µm und Flüssigkeitsschwall können zur Zerstörung der Verdichterstufen führen.

5.1.3 Abluftseite (siehe Datenblätter D111 + D117)

Beim Einsatz eines Ölnebelabscheiders wird die Abluftleitung an (**B**) angeschlossen. Wird die Abluftleitung direkt angeschlossen, muss sie grundsätzlich von der Pumpe weg mit einem Gefälle verlegt werden.

Bei einer Steigleitungs-Ausführung muss möglichst nahe an der Pumpe ein Auffangbehälter für das Kondensat (mit Entleerungsmöglichkeit, Durchmesser von mindestens ½") installiert werden. Dabei muss unterhalb des Austrittflansches eine Überwachung installiert sein. Dadurch wird ein Rückfließen von Kondensat in die Pumpe bei Nichtablassen verhindert.

Abluftwiderstand der Leitung darf 0,3 bar Überdruck nicht überschreiten.

5.2 Elektrische Installation

5.2.1 Allgemein (siehe Datenblätter D111 + D117)

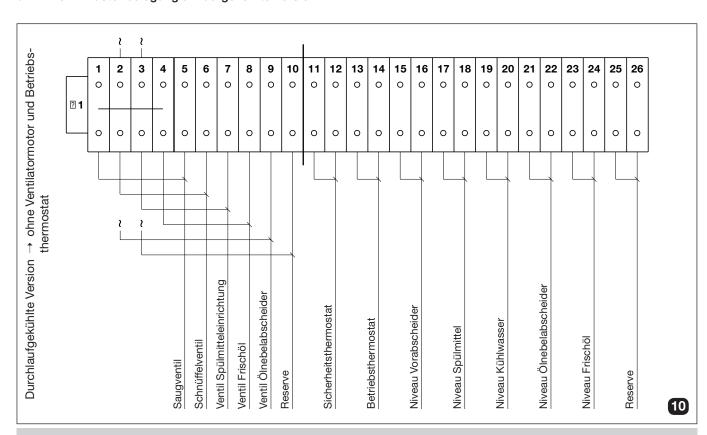
Die elektrischen Motordaten sind auf dem Datenschild (**N**) bzw. dem Motordatenschild angegeben. Die Motoren entsprechen DIN/VDE 0530 und sind in Schutzart IP 54 und Isolationsklasse B oder Fausgeführt. Das entsprechende Anschlussschema befindet sich im Klemmenkasten des Motors. Die Daten des Motors und der Steuerung sind mit den Daten des vorhandenen Stromnetzes zu vergleichen (Stromart, Spannung, Netzfrequenz, zulässige Stromstärke).

Motor über Motorschutzschalter anschließen (zur Zugentlastung des Anschluss-Kabels ist eine PG-Verschraubung vorzusehen).

Wir empfehlen die Verwendung von Motorschutzschaltern, deren Abschaltung zeitverzögert erfolgt, abhängig von einem evtl. Überstrom. Kurzzeitiger Überstrom kann beim Kaltstart der Maschine auftreten.

4

Die elektrische Installation darf nur von einer Elektrofachkraft unter Einhaltung der EN 60204 vorgenommen werden. Der Hauptschalter muss durch den Betreiber vorgesehen werden.


5.2.2 Richtwerte für die Einstellung des Motorschutzrelais

Die Richtwerte für die Einstellung des Motorschutzrelais entnehmen Sie den Unterlagen des Motorherstellers.

5.2.3 Elektrische Anschlüsse für den Motor und Steuerung der Kontroll-Einrichtungen

Alle elektrischen Anschlüsse für den Motor und für die Steuerung der Kontroll-Einrichtungen befinden sich im Klemmenkasten. Jede Anschlussklemme der Klemmenleiter hat eine Nummer und alle Anschlüsse für Motor und Kontroll-Organe sind einer bestimmten Nummer zugeordnet (siehe Stromlaufplan Bild 10). Bei Nachrüstung oder Reparaturarbeiten ist diese Zuordnung der Nummern für die Anschlüsse unbedingt einzuhalten. Funktionsstörungen lassen sich vermeiden und Fehlerquellen somit leichter finden.

5.2.4 Klemmkastenbelegung umlaufgekühlte Version

6. Betrieb

6.1 Kühlfüssigkeit

6.1.1 Durchlaufkühlung (Bild 12)

Für die Inbetriebnahme der Pumpe (VWZ 102 – VWZ 402 (14)) wird zuerst die Wasserleitung am Schlauchanschluss (\mathbf{C}) angeschlossen. Durch Eindrücken der Ventilkappe bis zum Anschlag des Selbstschluss-Durchgangsventil (\mathbf{U}_4) fließt Wasser in das Kühlergehäuse (\mathbf{Y}_4). Das Ventil muss so lange betätigt werden bis Wasser aus dem Schlauchanschluss (\mathbf{D}) austritt. Dann Schlauch für den Abfluss anschließen. Ist die Abwasserleitung schon fest montiert, muss vor der Füllung die Verschlussschraube (\mathbf{U}_{25}) zur Entlüftung geöffnet werden. Nach Austritt des Kühlwassers Öffnung wieder schließen. Die Abführung (\mathbf{D}) des Kühlwassers aus dem Kühlergehäuse (\mathbf{Y}_4) muss drucklos erfolgen.

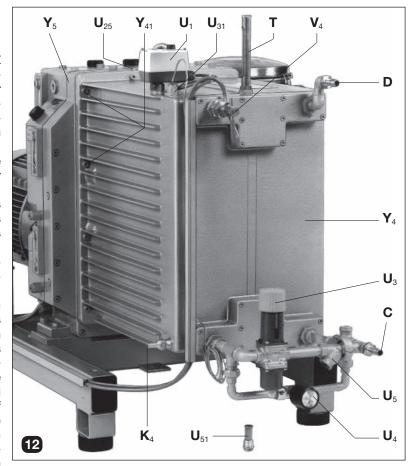
Kühlwasserdruck größer als 0,3 bar Überdruck führt zur Zerstörung des Kühlwassergehäuses.

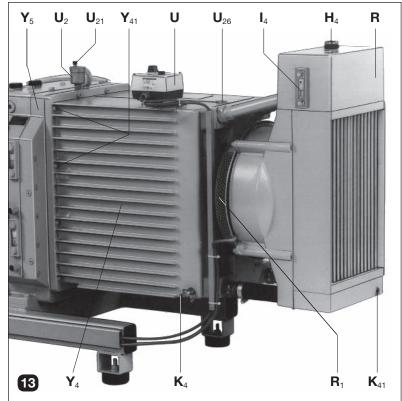
Das thermostatische Wasserventil (\mathbf{U}_3) mit seinem Fühler (\mathbf{U}_{31}) im Kühlergehäuse regelt den Durchfluss des Kühlwassers. Es hat einen Einstellbereich von $50^{\circ}\text{C}-90^{\circ}\text{C}$. Je nach Erfordernis des Arbeitsbereiches wird die Betriebstemperatur, die dann konstant bleiben muss, eingestellt. Am Thermometer (\mathbf{T}) kann sie abgelesen werden. Sollte aus irgend einem Grund die Betriebstemperatur höher steigen, stellt der auf dem Kühlergehäuse angebrachte Thermostat (\mathbf{U}_1) bei 90°C die Pumpe ab. Diese Temperatur ist vom Hersteller eingestellt und sollte nicht verstellt werden. Sollten prozessbedingt höhere Temperaturen notwendig sein, ist dies nach Rücksprache mit dem Stammhaus möglich.

Damit der Schmutz im einfließenden Kühlwasser das thermostatische Wasserventil nicht verunreinigt und in seiner Funktion behindert, ist ihm ein Schmutzfänger (\mathbf{U}_5) vorgeschaltet. Je nach Verschmutzung des Kühlwassers ist nach angemessenen Zeitabständen der Schmutzfänger zu warten. Verschlussschraube (\mathbf{U}_{51}) öffnen und vorhandenes Sieb reinigen.

6.1.2 Umlaufkühlung (Bild 13)

Für die Inbetriebnahme der Pumpe (VWZ 102 – VWZ 402 (13)): Kühlflüssigkeit an (\mathbf{H}_4) drucklos soweit einfüllen, bis der Füllstand die Mitte des Schauglases (\mathbf{I}_4) erreicht hat. Grundsätzlich muss der Kühlflüssigkeit ein Frostschutzmittel (ca. 50%) beigemischt werden. Beide Flüssigkeiten sind vor dem Einfüllen gut durchzumischen. Ein einfaches Zusammenschütten ist wegen ihrer verschiedenen spezifischen Gewichte nicht ausreichend. Die Einfüllmengen entnehmen Sie bitte dem Datenblatt D117.


Das Ablassen der Kühlflüssigkeit erfolgt durch Öffnen des Ablasshahnes (\mathbf{K}_4) am Kühlergehäuse (\mathbf{Y}_4) und öffnen der Verschlussschraube (\mathbf{K}_{41}) am Kühler (\mathbf{R}). Zuvor zum Entlüften Verschlussschraube (\mathbf{U}_{26}) herausschrauben.


6.1.3 Kühlwasserüberwachung (Bild 12 und 13)

Bei der Pumpe (Durchlaufkühlung) überwacht der Sicherheitsthermostat (U₁) die Temperatur des Kühlwassers.

Bei Inbetriebnahme der Pumpe (Umlaufkühlung) überwacht der Sicherheits- und Betriebstemperatur-Thermostat (**U**) die Temperatur des Kühlwassers und übernimmt die Ein-/Ausschaltung des Axial-Lüfters (**R**₁) um die Pumpe auf einer konstanten Betriebstemperatur zu halten. Nach der Inbetriebnahme ergibt sich im Kühlwassersystem ein Druck von ca. 0,3 bar. Über das Sicherheitsventil (**H**₄) wird weitersteigender Druck sofort ausgeglichen. Besonders bei Erst- und Nachfüllung von Kühlwasser bilden sich während des Betriebes an der Oberfläche Luftblasen, die durch das Schnellentlüftungsventil (**U**₂) entweichen. Dabei muss die Gewindekappe (**U**₂₁) auf dem Ventil, wenn die Pumpe arbeitet, mit 2-3 Gewindegängen geöffnet sein.

Sollte die Pumpe (Durch- oder Umlaufkühlung) an ihrem Standort der Frostgefahr ausgesetzt sein, ist die Pumpe durch geeignete Maßnahmen zu schützen. Diese Betriebstemperatur kann, je nach Erfordernis, im Bereich von 50°-80°C eingestellt werden. Wenn jedoch die Sicherheitstemperatur von 90°C erreicht wird, schaltet der Thermostat die Pumpe automatisch ab. Sollten prozessbedingt höhere Temperaturen notwendig sein, ist dies nach Rücksprache mit dem Stammhaus möglich.

6.2 Ölschmierung (siehe Datenblätter D111 + D117)

Die Pumpe wird mit gefüllten Ölvorratsbehältern (ausgenommen Frischöl) versandt. Trotzdem sollten aus Sicherheitsgründen die Ölstände überprüft werden. Voller Füllstand ist jeweils erreicht, wenn sich der Ölspiegel im oberen Drittel des Ölstandsanzeigers befindet.

Schauglas: Frischöl (I), ND-Lager (I1), HD-Lager (I2), Getriebe (I3). Bei fehlendem Öl muss nachgefüllt werden. Öleinfüllstelle: Frischöl (H), ND-Lager (H₁), HD-Lager (H₂), Getriebe (H₃). Für den Frischölbehälter ist serienmäßig ein Ölniveauschalter (V) eingebaut. Er stellt die Vakuumpumpe automatisch ab sobald minimaler Ölstand erreicht wird. Nach dem Nachfüllen des Öles kann die Vakuumpumpe wieder gestartet werden. Wir empfehlen folgende Ölsorten: Bechem VBL 100, BP Energol RC 100, Esso Umlauföl 100, Mobil Vakuumpumpenöl Heavy, Shell Tellus Öl C100 oder Aral Motanol HK 100. Andere Schmiermittel dürfen nur nach vorheriger Absprache mit dem Hersteller eingesetzt werden. Die vollständige Auswechslung des Lageröles und des Getriebeöles sollte einmal jährlich durchgeführt werden. Bei extremen Einsatzbedingungen müssen die Wartungsintervalle je nach Notwendigkeit verkürzt werden. Ölempfehlungsschild (M), Ölablass ND-Stufe (K₁) und HD-Stufe (K₂). Auch die Auswechslung des Öles im Getrieberaum sollte man nach ca. 3000 Betriebsstunden vornehmen (K₃).

Messung des Frischölverbrauches: Frischöl bis zum oberen Strich des Schauglases (I) einfüllen. Pumpe 10 h in Betrieb nehmen. Anschließend wieder Frischöl bis zum oberen Strich des Schauglases nachfüllen.

Frischölverbrauch = Nachfüllmenge / 10 h

Das Altölist gemäß den Umweltschutz-Bestimmungen zu entsorgen. Bei Ölsortenwechsel Ölbehälter vollständig entleeren.

6.3 Ölschmierpumpe

Die Ölschmierpumpe wird werkseitig auf die erforderliche Fördermenge eingestellt.

Eine Veränderung dieser Menge darf nur nach Rücksprache mit Rietschle erfolgen.

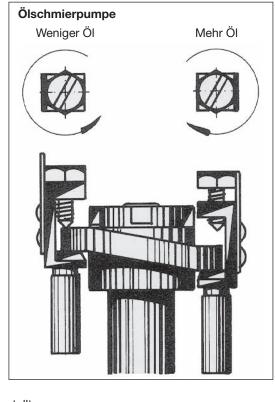
Eine Veränderung der Ölmenge erfolgt durch Drehen der Regulierschrauben. Pro Umdrehung wird die Förderleistung um 1/3 verändert. Weniger Öl nach links; mehr Öl nach rechts.

Bei erstmaliger Inbetriebnahme, nach einer Stillstandszeit über 1 Woche, nach Demontage der Getriebeeinheiten, s nach Stufenwechsel, nach Reinigung der Ölpumpe und nach Arbeiten an den Ölleitungen muss mit Hilfe der Kurbel Öl in die Leitungen gepumpt werden (ca. 150-200 Umdrehungen).

Ölverbrauch für VWZ und für VPA (VWZ + Rootsgebläse): I/h

VWZ	102	162	252	402
50 Hz	0,130	0,130	0,162	0,162
60 Hz	0,156	0,156	0,194	0,194

6.4 Inbetriebnahme


Warnung -> Anlauf mit Zuleitungen

Beim Anlauf können durch Verunreinigungen in den Zuleitungen schwere Schäden an der Pumpe die Folge sein. Zum Schutz der Pumpe muss beim Anlauf vom Betreiber ein vakuumfestes Anlaufsieb (5 µm) saugseitig installiert werden.

Pumpe zur Drehrichtungsüberprüfung kurz starten (Drehrichtungspfeil (O → D111 + D117)). Als Zubehör kann antriebseitig ein Freilauf vorgesehen werden, der bei falscher Drehrichtung des Motors ein Mitlaufen der Vakuumpumpe verhindert.

Achtung! Beim Fördern von feuchten und aggressiven Medien muss die Vakuumpumpe vor und nach dem Prozess gegen die geschlossene Saugseite, jedoch offenem Schnüffelventil (Zubehör) betrieben werden. Die Vor- bzw. Nachlaufzeit ist prozessabhängig, beträgt aber üblicherweise zwischen 20 bis 30 Minuten.

Beim Vorlauf wird die Pumpe auf die Betriebstemperatur gebracht. So wird eine Kondensation feuchter Medien innerhalb der Pumpe vermieden. Durch den Nachlauf werden Rückstände ausgespült und gleichzeitig für den Stillstand konserviert.

VPA	102	162	252	402
50 Hz	0,195	0,195	0,234	0,243
60 Hz	0,234	0,234	0,291	0,291

7. Wartung

Bei Maßnahmen zur Instandhaltung, bei denen Personen durch bewegte oder spannungsführende Teile gefährdet werden können, ist die Pumpe durch ziehen des Netzsteckers oder Betätigen des Hauptschalters vom E-Netz zu trennen und gegen Wiedereinschalten zu sichern. Wartung nicht bei betriebswarmer Pumpe durchführen.

(Verletzungsgefahr durch heiße Maschinenteile oder heißes Schmieröl). Gefahrstoffe müssen für Wartungsarbeiten beseitigt werden. Sollten desweiteren Personen in Arbeitsbereichen eingesetzt werden (z.B. Wartung) in denen mit Gefahrstoffen umgegangen wird, so sind diese über alle für die Durchführung eines Auftrages relevanten Sicherheitsvorschriften zu informieren!

7.1 Öldosierpumpe

Eine besondere Wartung der Schmierpumpe ist während des Betriebes nicht notwendig. Bitte achten Sie darauf, dass immer genügened Frischöl im Vorratsbehälter ist, damit keine Luft in die Leitungen gepumpt wird. Ist dieser Fall trotzdem eingetreten, dann sind die Leitungen, die gegen Druck fördern, an der Schmierstelle zu lösen und erst dann wieder anzuschließen, wenn das Öl ohne Luftblasen austritt.

Die Schmierpumpe muss mindestens einmal im Jahr gründlich mit Benzin oder Petroleum durchgepumpt werden. Zusätzlich muss der Frischölbehälter ausgespült werden. Eine Reinigung der Schmierpumpe ist auch dann notwendig, wenn diese erst längere Zeit nach Anlieferung in Betrieb genommen wird oder mehrere Monate nicht gearbeitet hat. Die in den Steuerkanälen befindlichen Olrückstände können sich verhärtet haben und beeinträchtigen die Funktion der Pumpe.

7.2 Ölnebelabscheider (Zubehör Abluftseite)

Die Ölnebenabscheider werden direkt an den Ausblasflansch der Vakuumpumpe angeflanscht. Die Abscheidung erfolgt immer in zwei Stufen:

Abscheidung:

- → Flüssigkeitsteilchen im Kondensatsammelraum
- → Aerosole in den Filterkerzen

Die Ölnebelabscheider sind für die chemisch-pharmazeutische Industrie in zwei Materialvarianten verfügbar:

→ Edelstahl: 1.4541 → Glas

Die Filterkerzen sind in Borsilikatglas oder Teflon ausgeführt, so dass eine vollkommene Lösungsmittelbeständigkeit und eine teilweise Säurebeständigkeit gewährleistet ist.

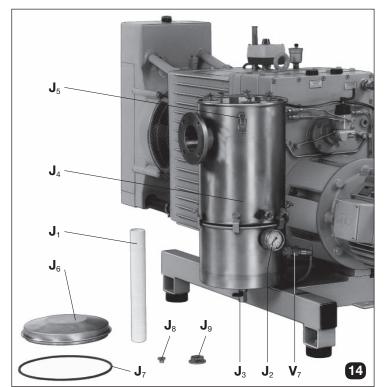
Hinweis: Bei polymerisierenden oder verharzenden Produkten ist es nicht ratsam, diese Art von Abscheidung einzusetzen. Die Verstopfung der Filter tritt sehr schnell ein und somit ist eine intensive Wartungsarbeit und ein kostenintensiver Filterwechsel erforderlich.

7.2.1 Wartung Ölnebelabscheider (Bild 14)

Bei steigender Stromaufnahme des Antriebes und bei einem Filterwiderstand des Ölnebelabscheiders von 0,5 bis 0,6 bar (siehe Manometer (J₂)) müssen die Filterkerzen (J₁) ausgewechselt und der Behälter (J₄) gereinigt werden. Filterkerzen-Wechsel: Durch Lösen der Spannklammern (J₅) kann der Ölbehälter-Deckel (**J**₆) und O-Ring (**J**₇) abgenommen werden. Lösen der Rändelmutter (J₈). Abnehmen des Spanndeckels (J₉). Filterkerzen (J₁) auswechseln. Beim Einbau ist der O-Ring (J₇) auf seine Dichtheit zu überprüfen. Es muss darauf geachtet werden, dass während des Betriebes der Pumpe das anfallende Kondensat/Ölgemisch regelmäßig manuell oder automatisch abgelassen wird. Serienmäßig ist eine Niveauüberwachung (V₇) eingebaut, welche bei entsprechendem Füllstand die Pumpe automatisch abschaltet. Für den abgebildeten Ablasshahn (J₃) kann ein Magnetventil (Zubehör) für automatischen Öl/Kondensatablass eingesetzt werden.

8. Störungsbehebung

8.1 Überstrom an der Pumpe


- 1. Ölfüllstand Getriebeöl überprüfen (nur im Stillstand der Pumpe), evtl. Öl auf Normalstand ablassen.
- Messung des Gegendruckes der Abluftleitung, evtl. Austausch von Filterkerzen.
- 3. Überprüfung der mechanischen Drehbarkeit von Getriebe und Verdichterstufen:
- → Motor abbauen und an der Kupplung drehen

8.2 Abfall des Vakuums (Bild 15)

- Vakuum überprüfen am Vakuum-Anschluss (A), evtl.
 Sieb (A₁) reinigen.
- Überdruck überprüfen in der Abluftleitung (B₁). (Abluftwiderstand darf 0,3 bar nicht übersteigen).
- Wird das Endvakuum nicht erreicht, folgende Arbeiten durchführen:
- Sieb (A₁) hinter dem Saugflansch (X₁) ausbauen und reinigen.
- Überströmventil (Q) an (Q₁) ausbauen und auf Funktion überprüfen; sowie Ventilsitz überprüfen.
- Vakuum zwischen ND- und HD-Stufe überprüfen (Verschlussschraube (Q2) herausdrehen und Vakuum messen). Werden am Vakuum-Anschluss (A) und an (Q2) das gleiche Vakuum gemessen, dann ist die ND-Stufe defekt. Liegt der gemessene Druck an (Q2) nahe beim atmosphärischen Druck, dann ist die HD-Stufe defekt.

8.3 Hoher Ölverbrauch

- Ölverlust der Lagerschmierung (Dichtungen zwischen Lager und Verdichtungsraum überprüfen und auswechseln, (siehe auch Seite 14)).
- Zu hoher Ölverbrauch der Frischölschmierung (Rückschlagventile in den Ölleitungen kontrollieren, defekte Ventile auswechseln. Ölleitungen demontieren und überprüfen, ob in den Leitungen ein Vakuum vorhanden ist.

REPARATURANLEITUNG

 \mathbf{Y}_5

Y₅₅

S₂₁

S

S₁₁


20

1. Demontage und Montage des Kühlergehäuses (Bild 12, 13 und Datenblätter D111 + D117)

 H_2

H₄

- VWZ abschalten und auf Atmosphärendruck fluten
- Öffnen der Verschlussschraube (U₂₅) bzw. (U₂₆).
- Ablassen der Kühlflüssigkeit:
- VWZ (14) → am Ablasshahn (**K**₄).
- VWZ (13) → am Ablasshahn (K₄). Restliche Entleerung erfolgt durch Öffnen der Verschlussschraube (K₄₁) unterhalb des Kühlerblocks (R).
- Kabel von folgenden Geräte am Klemmenkasten (G) abhängen:
- VWZ (14) → Thermostat (U₁) und Niveau-Schalter (V₄).
- VWZ (13) → Thermostat (U), Niveau-Schalter
 (V₄) und Ventilator (R₁).
- Ist ein Kabelkanal vorhanden, dann Deckel des Kanals abnehmen; das Abkabeln der Leitungen entfällt.
- Mit endlosem Hebeband und Kran am Kühlergehäuse (Y₄) die gesamte Kühlereinheit sichern.

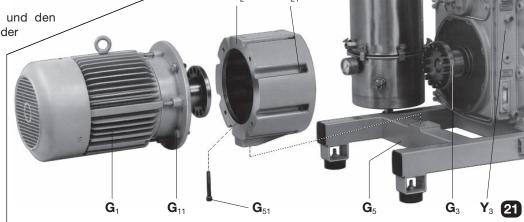
- Kühlergehäuse (Y₄) vom Anschlussdeckel (Y₅) mit einem Kran abnehmen und auf ein Kantholz setzen.
- Die Montage des Kühlergehäuses erfolgt in umgekehrter Reihenfolge.
- Bei Bedarf neue Dichtung verwenden.
- Kühlflüssigkeit an (H₄) einfüllen.

2. Wechsel der ND- und HD-Verdichterstufen (Bild 20)

• Die Demontage- und Montage-Folge der ND- und HD-Verdichterstufen sind gleich.

2.1 Demontage der Verdichterstufen

- Demontage des Kühlergehäuses (siehe oben).
- Lageröl ablassen: → ND-Verdichterstufe an (K₁) und HD-Verdichterstufe an (K₂).
- Verdichterstufe (S₁) bzw. (S₂) mit Hebeöse und Kran sichern.
- Schrauben (S₁₁) bzw. (S₂₁) lösen.
- Mit kleinen, ruckartigen Bewegungen Verdichterstufe von der Zentrierung und der treibenden Kupplungshälfte lösen und herausziehen.


2.2 Montage der Verdichterstufen

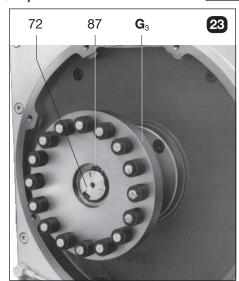
- Vor dem Zusammenbau sind die Verbindungsräume (Y₅₅) im Anschlussdeckel (Y₅) zu reinigen.
- Werden die Verdichterstufen nicht ausgewechselt, dann müssen auch die Arbeitsräume (**S**₁₅ Bild 27) in der Verdichterstufe gereinigt werden (es ist darauf zu achten, dass kein Schmutz in den Verdichterraum (**S**₁₆ Bild 27) gelangt).
- Dichtung (30) beidseitig mit dauerplastischem Dichtungsmittel (Anti-Seize) einstreichen (siehe auch E117/1).
- Die weitere Montage erfolgt in umgekehrter Reihenfolge.
- Bei Bedarf neue Dichtung verwenden.
- Lageröl einfüllen: ND-Verdichterstufe an (H₁) / HD-Verdichterstufe an (H₂)

Montage des Kühlergehäuses (siehe oben)

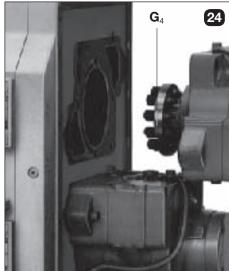
3. Demontage und Montage des Antriebs (Bild 21) Kabel für Motor (G₁) abklemmen. Schrauben (G₁₁) lösen und Motor aus der Zentrierung des Motorflansches (G₂) und der pumpenseitigen Kupplungshälfte (G₃) herausziehen. Schraube (G₅₁) im Motorflansch (G₂) von dem Grundgestell (G₅) lösen. Schrauben (G₂₁) lösen und den Motorflansch (G₂) aus der Zentrierung des Getriebegehäuses (Y₃) herausziehen.

- Die Kupplungshälfte (G₃) ist so besser zugänglich.
- Die Montage erfolgt in umgekehrter Reihenfolge.

4. Wechsel der Kupplungsgummis und der Kupplungsbolzen

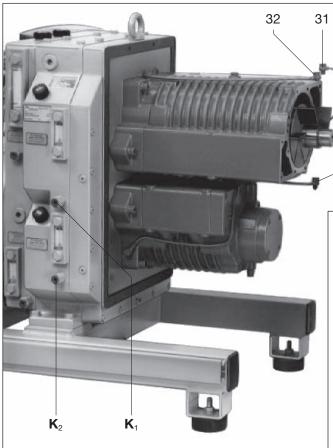

4.1 Am Antrieb (Bild 22 und 23)

- Demontage und Montage des Antriebs (siehe Seite 12).
- Sicherungsring (38) lösen und Kupplungsgummi (37) abziehen und gegebenenfalls auswechseln.
- Sicherungsring (87) lösen.
- Kupplungshälfte (G₃) mit einer Abziehvorrichtung von der Antriebswelle (72) abziehen.
- Mutter (41) und Scheibe (40) lösen.
- Den Kupplungsbolzen (36) herausziehen und gegebenenfalls auswechseln.
- Die Montage erfolgt in umgekehrter Reihenfolge. (siehe auch E117/2)


4.2 An der Verdichterstufe (Bild 22 und 24)

- Demontage und Montage des Kühlergehäuses (siehe Seite 12).
- Demontage und Montage der Verdichterstufe (siehe Seite 12).
- An Kupplungshälfte (G₄) Sicherungsring (38) lösen und Kupplungsgummi (37) abziehen und gegebenenfalls auswechseln.
- Mutter (41) lösen und mit Scheibe (40) abnehmen.
- Den Kupplungsbolzen (36) herausziehen und gegebenenfalls auswechseln.
- Die Montage erfolgt in umgekehrter Reihenfolge.

(siehe auch E117/1)


3

29

25

42

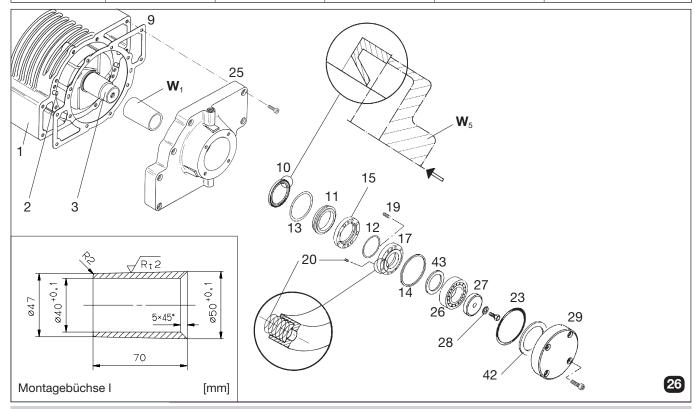
5. Reparaturen an der B-Seite der Verdichterstufen

5.1 Demontage der Lagerteile und Dichtungen (Bild 25)

- Demontage des Kühlergehäuses (siehe Seite 12).
- Lageröl ablassen

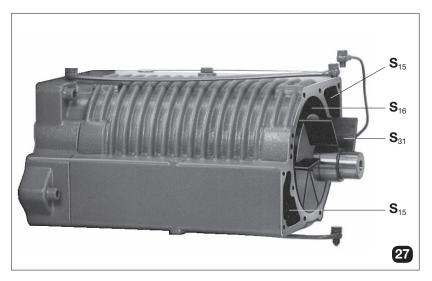
25

27/28


- ND-Verdichterstufe an (**K**₁) / HD-Verdichterstufe an (**K**₂)
- Ölleitungen (31, 32, 32) bzw. (57, 58, 58) am Gehäusedeckel B (25) bzw. (55) abschrauben. Die Ölleitungen nur so weit wegbiegen, wie es zur Demontage des Gehäusedeckels B notwendig ist.
- Lagerdeckel (29) abschrauben und wenn vorhanden Pass-Scheibe (42) zur Seite legen.
- Schraube mit Unterlagscheibe (27/28) aus dem Rotorzapfen (3) bzw. (52) herausdrehen.
- Schrauben am Gehäusedeckel B (25) bzw. (55) herausdrehen.
- Abziehvorrichtung (W) auf den Gehäusedeckel B aufschrauhen
- Gehäusedeckel B mit Lager und Dichtungen vom Rotorzapfen (3) bzw. (52) herunterziehen.

siehe auch E117/1 und E117/4

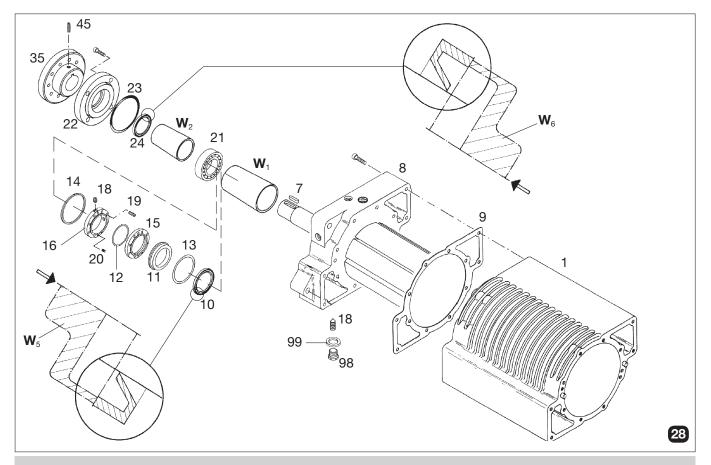
5.2 Montage der Lagerteile und Dichtungen (Bild 26)


- Vor dem Zusammenbau sind alle Teile aus der Lagerbohrung des Gehäusedeckels (25) bzw. (55) zu entfernen. Die Teile (Pos. 10, 11, 12, 13, 14, 15, 17, 23) überprüfen und eventuell auswechseln.
- Wellendichtring (10) mit Montagehilfe (W₅) in Gehäusedeckel einsetzen (Dichtlippe siehe Bild 26).
- Montagebüchse I (W₁) auf Rotorzapfen (3) bzw. (52) schieben und einölen.
- Axialspalte zwischen Gehäusedeckel und Rotor an Hand der alten Dichtungen (9) bzw. (59) ausmessen oder rechnerisch ermitteln (Gehäuselänge + Dichtungen (9 bzw. 59) Rotor = Spalt).
 - Der Radialspalt wird werkseitig eingestellt und durch Zentrierstifte fixiert. Sollte eine Gehäuseüberarbeitung notwendig werden, ist anschließend durch Einstellen und Verstiften von Gehäuse und Enddeckeln die vorgegebene Toleranz wiederherzustellen.
- Achtung! Nur wenn die in der Tabelle (unten) angegebenen Werte eingehalten werden, arbeitet die Pumpe einwandfrei und betriebssicher. Unterschiedliche Stärken der Packung (9) bzw. (59) berücksichtigen!
- Dichtung (9) bzw. (59) beidseitig mit dauerplastischem Dichtmittel (Anti-Seize) bestreichen und auf die Dichtfläche des Gehäuses (1) bzw. (51) legen.
- Gehäusedeckel in die Zentrierstifte (2) schieben und leicht anschrauben (nicht fest anziehen).
- Gegenring (11) und O-Ring (13) auf der Montagebüchse I (W₁) in die Lagerbohrung des Gehäusedeckels (25) bzw. (55) einführen.
- Dichtflächen des Gegenrings (11) und Gleitrings (15) leicht einölen.
- Gleitring (15) mit O-Ring (12) bis zum Gegenring (11) einführen und Montagebüchse I (W₁) abziehen.
- Druckfedern (20) einfetten und in die Bohrungen des Mitnehmerrings B (17) einsetzen.
- Mitnehmerring B (17) auf Rotorzapfen aufschieben; dabei müssen die Druckfedern (20) und die Spannhülsen (19) in die Bohrungen des Gleitrings (15) eingeführt werden.
- Pass-Scheibe (43) wenn vorhanden an Mitnehmerring B (17) anlegen.
- O-Ring (14) und Lager (26) einsetzen.
- Unterlegscheibe (27) mit Schraube und Federscheibe (28) am Rotorzapfen (3) bzw. (52) anschrauben.
- Pass-Scheibe (42) wenn vorhanden am Lager (26) anlegen.
- Lagerdeckel (29) mit O-Ring (23) vorsichtig auf die Welle schieben und anschrauben.
- Schrauben des Gehäusedeckels fest anziehen und Ölleitungen anschrauben.
- Montage der Verdichterstufe und des Kühlergehäuses (siehe Seite 12).

	Einstelldaten der Spalten an der Verdichterstufe in mm						
	Axialspalt				Radialspalt (zwischen		
VWZ	ND-Stufe		HD-Stufe		Rotor und der Wand		
	B-Seite Festspalt	Gesamtspalt	B-Seite Festspalt	Gesamtspalt	Gehäusebohrung)		
102		0,25		0,25	0,10		
162	0.05	0,35	0.05	0,25	0,12		
252	0,05	0,50	0,05	0,30	0,16		
402		0,70		0,55	0,16		

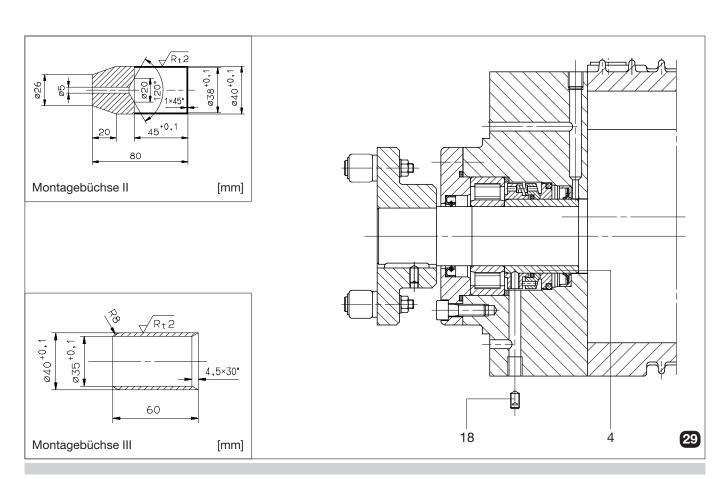
6. Wechsel der Lamellen (Bild 27)

- Demontage des Kühlergehäuses und der B-Seite der Verdichterstufe (siehe Seite 12 und 13).
- Lamellen (S₃₁) herausnehmen und überprüfen
- Achtung! Falls notwendig Lamellen nur satzweise wechseln.
- Lamellen in Rotorschlitze einlegen (angeschrägte Fläche der Lamellen muss mit dem Rotorradius übereinstimmen.
- Lamellen vor der Montage leicht einölen. Lamellen müssen sich im Rotorschlitz leicht bewegen lassen.
- Montage der B-Seite der Verdichterstufe und des Kühlergehäuses (siehe Seite 12 und 13).



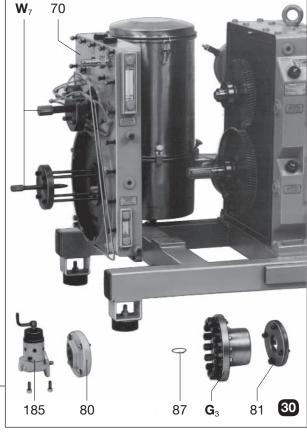
7. Reparaturen an der A-Seite der Verdichterstufen

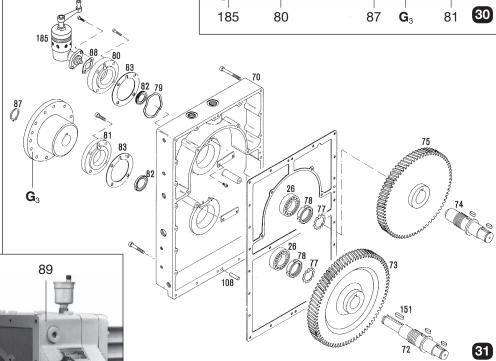
• HD- und ND-Stufe haben den gleichen Aufbau.

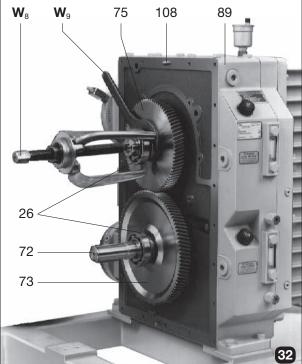

7.1 Demontage der Lagerteile und Dichtungen (siehe Bild 28 und E 117/1, E 117/4)

- Demontage des Kühlergehäuses und der Verdichterstufe (siehe Seite 12).
- Ölleitungen an Gehäusedeckel A (8) bzw. (54) abschrauben (Ölleitungen nur so weit wegbiegen wie es zur Demontage des Gehäusedeckels notwendig ist).
- Gewindestift (45) in der Kupplungshälfte (35) lösen. Kupplungshälfte mit Abziehvorrichtung vom Wellenzapfen abziehen.
- Alle Schrauben am Lagerdeckel (22) lösen, Passfeder (7) entfernen und Lagerdeckel abziehen.
- Verschluss-Schraube (98) mit Dichtring (99) herausschrauben.
- Gewindestift (18) mit einem Inbusschlüssel (3 mm) lösen.
- Schrauben am Gehäusedeckel (8) bzw. (54) herausschrauben.
- Gehäusedeckel mit den Dichtungen und dem Lager-Außenring (21) mit einer Abziehvorrichtung abdrücken und vom Rotorwellenzapfen (3) bzw. (52) herunterziehen.

7.2 Montage der Lagerteile und Dichtungen (Bild 28 und 29)


- Vor dem Zusammenbau sind alle Teile aus der Lagerbohrung des Gehäusedeckels (25) bzw. (55) zu entfernen. Die Teile (Pos. 10, 11, 12, 13, 14, 15, 16) überprüfen und eventuell auswechseln.
- Wellendichtring (10) mit Montagehilfe (W₅) in Gehäusedeckel einsetzen (Dichtlippe siehe Bild 28).
- Montagebüchse I (W₁) auf Rotorzapfen (3) bzw. (52) schieben und einölen.
- Dichtung (9) bzw. (59) beidseitig mit dauerplastischem Dichtmittel (Anti-Seize) bestreichen und auf die Dichtfläche des Gehäuses (1) bzw. (51) legen.
- Gehäusedeckel in die Zentrierstifte schieben und leicht anschrauben (nicht fest anziehen).
- Gegenring (11) und O-Ring (13) auf der Montagebüchse I (**W**₁) in die Lagerbohrung des Gehäusedeckels (25) bzw. (55) einführen.
- Dichtflächen des Gegenrings (11) und Gleitring (15) leicht einölen.
- Gleitring (15) mit O-Ring (12) bis zum Gegenring (11) einführen.
- Montagebüchse I (W₁) abziehen.
- Gehäusedeckel (25) bzw. (55) fest anschrauben.
- Druckfedern (20) einfetten und in die Bohrungen des Mitnehmerrings A (16) einsetzen.
- Mitnehmerring A (16) auf Rotorzapfen aufschieben; dabei müssen die Druckfedern (20) und die Spannhülsen (19) in die Bohrungen des Gleitrings (15) eingeführt werden.
- Mitnehmerring A (16) so einrichten, dass die Spitze des Gewindestiftes (18) in der Ansenkung des auf dem Rotorzapfen befindlichen Innen-Ringes (4) den Mitnehmerring A (16) arretiert (siehe auch Bild 29).
- Gewindestift (18) mit entsprechenden Schrauben-Sicherungsmittel sichern und anziehen.
- Lageraußenring mit Zylinderrollen (21) in die Bohrung des Gehäusedeckels einführen.
- Montagebüchse II (W2) auf Rotorzapfen schieben und einölen.
- Wellendichtring (24) mit Montagehilfe (W₆) in Lagerdeckel (22) einsetzen (Dichtlippe siehe Bild 28).
- Lagerdeckel (22) mit Wellendichtring (24) und O-Ring (23) über die Montagebüchse II (W₂) schieben.
- Lagerdeckel (22) zentrieren und festschrauben.
- Montagebüchse II (W₂) abziehen.
- Passfeder (7) einlegen.
- Kupplungshälfte (35) aufziehen und mit Gewindestift (45) sichern.
- Ölleitungen anschrauben.
- Montage der Verdichterstufe und des Kühlergehäuses (siehe Seite 12).




8. Reparaturen am Getriebe

8.1 Demontage und Montage des Getriebegehäuses (Bild 30 und 31)

- Öl ablassen: (siehe Datenbläter D111 + D117).
- Frischöl an (K) / Lageröl: HD an (K₁) und ND an (K₂)
- Getriebeöl an (K₃)
- Demontage des Antriebs (siehe Seite 12).
- Sicherungsring (87) an der Antriebswelle (72) lösen.
- Kupplungshälfte (**G**₃) mit einer Abziehvorrichtung abziehen.
- Passfeder (151) entfernen.
- Schrauben am Lagerdeckel (81) lösen, Lagerdeckel und Dichtung (83) von Antriebswelle (72) abziehen (mit Wellendichtring (82)).
- Alle Ölleitungen nur an der Ölpumpe (185) abschrauben und bezeichnen.
- Ölpumpe (185) mit Dichtung (88) abschrauben.
- Flansch (80) mit Dichtung (83) abschrauben (Wellendichtring (82) befindet sich im Flansch (80)).
- Ausgleichscheibe (79) herausnehmen.
- Alle Schrauben am Getriebegehäuse (70) auch im Kupplungsbereich - herausdrehen.
- Mit den Abziehvorrichtungen (W₇) das Getriebegehäuse (70), durch gleichzeitiges Drehen der Abdrückschrauben, von den Stiften (108) lösen und abnehmen.
- Der Zusammenbau erfolgt in umgekehrter Reihenfolge. Auf folgendes ist dabei zu achten:
- Lagerdeckel (80) und Wellendichtring (82) werden vorsichtig ohne Montagebüchse über die Fase auf die Welle geschoben.
- Lagerdeckel (81) und Wellendichtring (82) werden mit Hilfe der Montagebüchse III (W₃) montiert.
- Montage des Antriebs (siehe Seite 12).
- Öl einfüllen: (siehe Datenbläter D111 + D117)
- Frischöl an (H) und Getriebeöl an (H₃)
- Lageröl: HD an (H₁) und ND an (H₂)

8.2 Wechsel der Stirnräder und Kugellager im Getriebegehäuse (Bild 31 und 32)

- Demontage und Montage des Getriebegehäuses.
- Beide Kugellager (26) mit Abzieher (**W**₈) abziehen (alte Lager nicht mehr verwenden).
- Sicherungsblech (77) aufbiegen.
- Wellen-Mutter (78) mit Hakenschlüssel (W₉) aufschrauben.
- Sicherungsblech (77) abnehmen.
- Stirnräder (73) und (75) abziehen.
- Die Montage erfolgt in umgekehrter Reihenfolge.
- Die Kugellager (26) müssen vor dem Aufziehen auf ca. 100°C erwärmt werden.

8.3 Wechsel der Lager, Wellendichtringe und Dichtungen im Anschlussgehäuse (Bild 33)

- Demontage und Montage des Kühlergehäuses und der Verdichterstufen (siehe Seite 12).
- Demontage und Montage des Getriebegehäuses (siehe Seite 17).
- Lösen der Sicherungsringe (87) an der Antriebswelle (72) und an der Stirnradwelle (74).
- Kupplungshälfte (86) abziehen.
- Passfeder (7) abnehmen.
- Schrauben am Lagerdeckel (81) lösen.
- Lagerdeckel (81), Dichtung (83) und Wellendichtringe (82) mit zwei Schrauben (M8) abziehen.
- Ausgleichscheibe (79) herausnehmen.
- Antriebswelle (72) mit Lager (26) und Stirnradwelle (74) mit Lager (26) in Richtung Antrieb aus dem Anschlussgehäuse drücken (mit Hilfe eines Rohres, das auf den Außenring des Lager gedrückt wird).
- Lager (26) abziehen und auswechseln.
- Die Montage erfolgt in umgekehrter Reihenfolge.
- Auf folgendes ist dabei zu achten:
- Kugellager (26) müssen vor dem Aufziehen auf die Wellen auf ca. 100°C erhitzt werden. - Bei der Montage des Lagerdeckels (81) mit den Welldichtringen (82) die Montagebüchse II (W₂) verwenden.

9.1 Reinigung der Saug- und Ablufträume im Anschlussgehäuse (Bild 34)

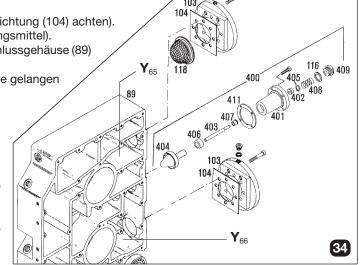
• Pumpe abschalten und auf Atmosphärendruck fluten.

Demontage der Rohrleitungen.

Demontage des Abscheiders (Z).

• Flansch (103) von Ansaugkanal (Y₆₅) abschrauben (auf Dichtung (104) achten).

• Halbkugel-Sieb (118) herausnehmen und reinigen (Lösungsmittel).


Arbeitsräume (Y₆₅ und Y₆₆) durch die Bohrungen im Anschlussgehäuse (89) reinigen.

(Es ist darauf zu achten, dass kein Schmutz in die Pumpe gelangen kann.)

• Die Montage erfolt in umgekehrter Reihenfolge.

9.2 Wechsel der Ventilteile am Überströmventil (Bild 34)

- Alle Schrauben am Ventil (400) lösen.
- Ventil (400) vorsichtig und gerade aus dem Arbeitsraum herausnehmen.
- Alle Teile und die Ventildichtfläche im Anschlussgehäuse (89) auf Funktionsfähigkeit überprüfen.
 - Falls notwendig Ventilsitz mechanisch nachbearbeiten.
- Vor dem Einbau des Ventils muss überprüft werden, ob der Ventilteller (404) im Ventilkörper (401) leicht läuft.
- Die Montage erfolgt in umgekehrter Reihenfolge.

33

10 Vorgehensweise bei einer Einlagerung von ölgeschmierten Drehschieber-Vakuumpumpen Allgemein

Alle Pumpen, die wir (die Fa. Rietschle) liefern, müssen innerhalb von drei Monaten in Betrieb genommen werden. Ist dies nicht möglich, dann beachten Sie bitte folgende Punkte, auf deren Einhaltung wir aus Gründen der Garantie bestehen müssen.

a. Lagerung der Pumpen

Die Räume in denen die Pumpen lagern, müssen trocken und frei von korrosiven Gasen sein und eine konstante Temperatur haben. Sie darf nicht unter 10°C absinken.

b. Zustand der Lager- Pumpen

Die Saug- und Druckseiten der Pumpen sind mit Hilfe von Blindflanschen zu verschließen. Alle Betriebsmittel müssen entsprechend den Betriebsvorschriften eingefüllt sein.

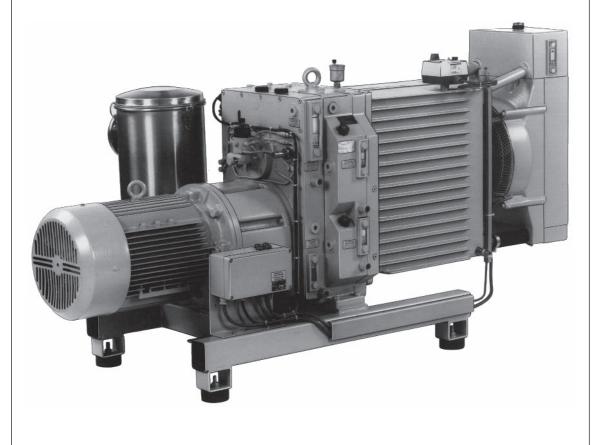
c. Wartungsarbeiten während der Einlagerung

Die Pumpen müssen einmal monatlich zwei Stunden in Betrieb genommen werden, um Korrosion in der Pumpe zu verhindern. Achten Sie bitte darauf, dass der Blindflansch auf der Druckseite vor Inbetriebnahme entfernt, und nach dem Betrieb wieder montiert wird. Der Blindflansch auf der Saugseite darf während des Betriebes nicht abgenommen werden, da die Pumpe bei Endvakuum laufen soll.

d. Inbetriebnahme der Pumpen

Bei allen Pumpen, die länger als 3 Monate lagern, muss durch den technischen Kundendienst der Firma Rietschle eine Inspektion mit anschließendem Probelauf durchgeführt werden. Diese Arbeiten gehen zu Ihren Lasten. Schäden, die auf eine unsachgemäße Lagerung oder Handhabung zurückzuführen sind, werden auf Ihre Kosten behoben.

Instruction and service manual ← Repair Instructions



Fresh oil lubricated rotary vane vacuum pumps

V-VWZ

V-VWZ 102 V-VWZ 162 V-VWZ 252 V-VWZ 402

BE 117

1.4.99

Gardner Denver Schopfheim GmbH

Postfach 1260

79642 SCHOPFHEIM GERMANY

Fon +49 7622 / 392 - 0

Fax +49 7622 / 392-300 e-mail: er.de@

gardnerdenver.com

www.gd-elmorietschle.com

Contents		Page
Instruction	on and service manual VWZ 102 – VWZ 402	
1.	Introduction	3
2.	Application	3
3.	Variations and Construction	
3.1	Variations	3
		3
3.2	Construction	4
3.3	Data sheets and spare parts lists	5
3.4	Accessories	5
3.5	Typical Field of Application	5
4.	Method of Operation	6
4.1	Pump	6
4.2	Pressure Relief Valve	6
4.3	Oil Lubrication	6
4.4	Shaft Seals	6
5.	Installation	6
5.1	Mechanical Installation	6
5.1.1	Mounting	6
5.1.2	Suction side	6
5.1.3	Exhaust	6
5.2	Electrical Installation	7
5.2.1	General	7
5.2.2	Approximate values for setting motor overload protection	7
5.2.3	Electrical connections for the motor and control equipment	7
5.2.4	Terminal Box Connections Closed Circuit Cooling	7
6.	Normal Operation	8
6.1	Cooling Liquid	8
6.1.1	Fresh or External Cooling	8
6.1.2	Closed Circuit Cooling	8
6.1.3	Cooling Liquid Control	8
6.2	Oil Lubrication	8
6.3	Oil Metering Pump	8
6.4	Initial Operation	9
7.	Maintenance	9
7.1	Oil Metering Pump	9
7.2	Oil Mist Separator	10
7.2.1	Maintenance of Oil Mist Separator	10
8.	Trouble Shooting	10
8.1	Pump Overload	10
8.2	Drop off of Vacuum	10
8.3	High Oil Consumption	10
Repair In	structions VWZ 102 - VWZ 402	
1.	Removal and Reassembly of Water Jacket	11
2.	Changing LP and HP Stages	11
2.1	Removal of Stages	11
2.2	Refitting of Stages	11
3.	Removal and Reassembly of Drive	11
4.	Changing Coupling Rubbers and Pins	12
4.1	Drive Motor	12
4.2	On Stages	12
5.	Repairs to Stages, Non-Drive End (B)	12
5.1	Removal of Bearings and Seals	12
5.2	Reassembly of Bearings and Seals	13
6.	Changing Blades	14
7.	Repairs to Stages, Drive End (A)	14
7.1	Removal of Bearings and Seals	14
7.2	Reassembly of Bearings and Seals	15
8.	Repairs to Gearbox	16
8.1	Removal and Reassembly of Gearbox	16
8.2	Changing Gear Wheels and Ball Bearings in Gearbox Housing	16
8.3	Changing Bearings, Shaft Seals and Seals	17
9.	Other Repairs	17
9.1	Cleaning the Suction and Exhaust Parts in Connection Housing	17
9.2	Changing the Pressure Relief Valve	17
10.	Instructions for Storing Oil Metering Rotary Vane Vacuum Pumps	17

INSTRUCTION AND SERVICE MANUAL

VWZ 402 with closed circulation cooling

1. Introduction

In the event of a pump being returned to us, for whatever reason (eg.repair) it must be free of all dangerous and toxic material. A corrosponding certificate has to be presented!

Explosion proof standards for the plant in which the vacuum pump will be installed, are the responsibility of the customer and should have the approval of the appropriate factory inspectorate.

2. Applications

a

VWZ vacuum pumps are available for handling a wide range of gases including those which are extremely moist or aggressive. They can also handle large quantities of water vapour.

The ambient and suction temperatures may be between 5 and 40°C. For temperatures out of this range please contact your supplier.

Suitable equipment should be fitted to prevent slugs of liquid or solid particles being drawn into the pump. Handling of explodible gases or vapours only on request with our company.

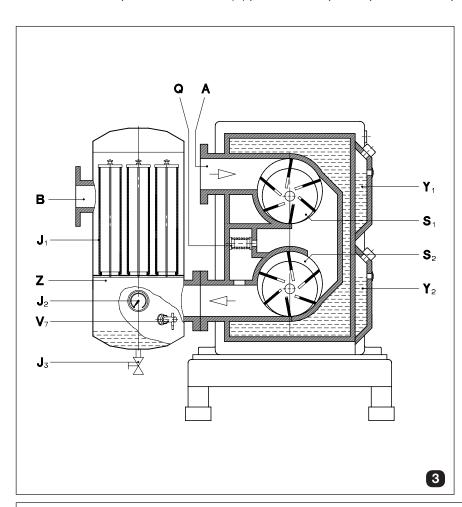
Please contact your local Rietschle office for advice.

For installation in explosion proof or special areas, motors conforming to the relevant standard must be fitted.

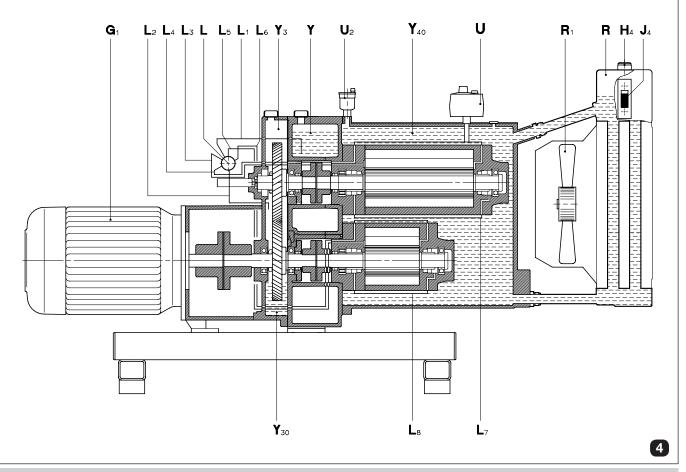
For installations that are higher than 1000 m above sea level there will be a loss in capacity. For further advice please contact your supplier. All applications where an unplanned shut down of the pump could possibly cause harm to persons or installations, then the corresponding safety backup system must be installed.

3. Variations and Construction

3.1 Variations


The type VWZ is available in 7 sizes but only sizes with a suction capacity of 100, 160, 250 and 400 m³/hr will be handled herein. All types will reach an ultimate vacuum of 0.5 mbar (absolute).

They are liquid cooled by:


- 1. Closed circulation cooling (see fig. 1) by means of integral water/air heat exchanger, which in turn is cooled by its own motor driven cooling fan. The cooling fan will be controlled by the thermostat.
- 2. External cooling (see fig. 2) by means of the cooling water regulating valve, which is controlled according to the cooling water outlet temperature.

3.2 Construction (fig. 3 and 4)

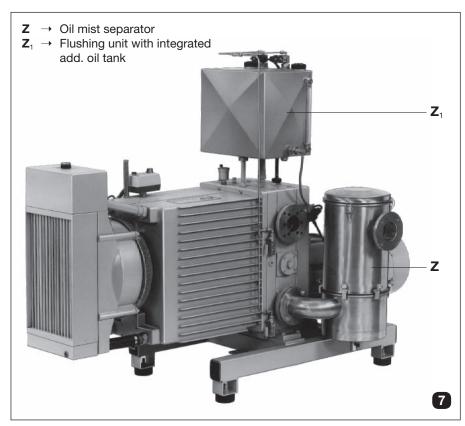
VWZ pumps are constructed in five main sections, i.e. gear box (\mathbf{Y}_3), compression stages (\mathbf{S}_1 , \mathbf{S}_2), oil supply (\mathbf{L}_1 to \mathbf{L}_8), cooling system (\mathbf{R} , \mathbf{Y}_{40} , \mathbf{R}_1) and separator systems (\mathbf{Z} , \mathbf{J}_1 , \mathbf{J}_2 , \mathbf{J}_3) on the suction side and exhaust side (optional). The pumps are water cooled. The built in pressure relief valve (\mathbf{Q}) permits start-up and operation of the pumps over the entire vacuum range.

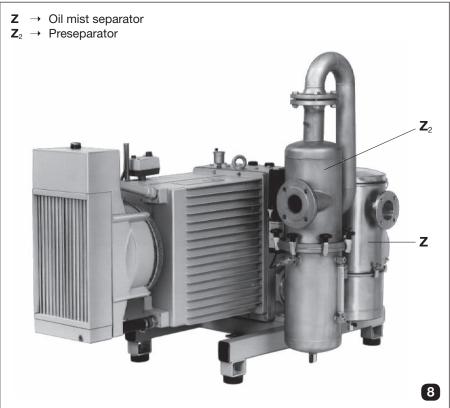
- A Vacuum connection
- **B** Exhaust connection
- G₁ Drive
- **H**₄ Cooling liquid filling cap and pressure relief valve
- I₄ Cooling liquid check
- **J**₁ Filter candles in oil mist separator
- **J**₂ Manometer for oil mist separator
- **J**₃ Drain cock for oil mist separator
- L Oil pump
- L₁ Oil pump feed line
- L₂ Oil pump leakage line
- L₃ Lubrication (LP) stage drive end
- L₄ Lubrication (LP) stage non-drive end
- L₅ Lubrication (HP) stage drive end
- L₆ Lubrication (HP) stage non-drive end
- L₇ Bearing lubrication (LP) stage
- L₈ Bearing lubrication (HP) stage
- **Q** Pressure relief valve
- R Heat exchanger
- R₁ Fan
- **S**₁ Low pressure stage (LP)
- **S**₂ High pressure stage (HP)
- **U** High temperature and
 - operating temperature thermostat
- **U**₂ Cooling liquid de-aeration
- V₇ Level control condensate / oil
- Y Fresh oil tank
- Y₁ Bearing oil tank (LP) stage
- Y₂ Bearing oil tank (HP) stage
- Y₃ Gear box unit
- Y₃₀ Gear box oil
- **Y**₄₀ Cooling liquid
- Z Oil mist separator

3.3 Data sheets and spare parts lists

see following data sheets:

D 111 / DA 111 (USA) External cooling → VWZ 102 – VWZ 402 (14)
D 117 / DA 117 (USA) Circulation cooling → VWZ 102 – VWZ 402 (13)


see following spare parts lists:


E 117/1 Parts for fundamental Units

E 117/2 Drive and gearbox E 117/3 Radiator cooling

E 117/4 Oil supply

E 117/5 Fresh/External Cooling

3.4 Optional extras

Vacuum side:

- butterfly valve
- bleed valve
- solid/liquid separator
- condenser

Exhaust side:

- oil mist separator
- condenser

General:

- control with pre and post run-flushing unit with integral add. oil tank
- automatic condensate drain

3.5 Typical field of applications

- vacuum drying
- vacuum distillation
- vacuum crystallisation
- vacuum degassing
- vacuum packing of moist products
- concentration of liquids, juices and extracts

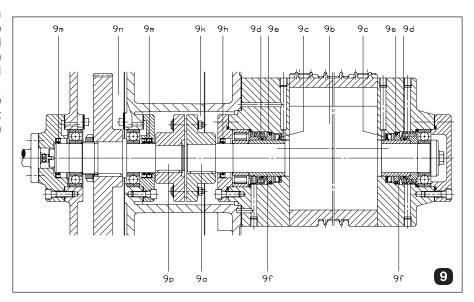
4. Method of operations

4.1 Pump

The compressor unit of the VWZ is a fresh oil, once through lubricated, rotary vane type pump. The flow direction is from top to bottom, so that any contamination in the suction stream or condensate is readily discharged.

4.2 Pressure relief valve

The spring loaded pressure relief valve is located between the LP and HP stages. The function of the valve is to prevent an overpressure occuring between the LP and HP stages when the suction pressure is atmospheric. This over-pressure would occur as a result of the higher capacity of the LP stage, compared to the HP stage. With the valve open the gases pass directly into the exhaust, by-passing the second stage. As the suction pressure reduces the pressure differential between interstage and exhaust becomes insufficient to hold open the valve, which closes progressively. When the interstage pressure drops to atmosphere or lower, then full two stage compression is in operation.


4.3 Oil lubrication

The bearings of the LP and HP stages and the gear wheels, each have their own separate oil lubrication supply.

The compression chambers of the vacuum pump are continually fed with a metered fresh oil supply, from an oil metering pump. This oil is exhausted from the pump together with the gas stream and separated out.

4.4 Shaft seals (fig. 9)

Shaft sealing rings (9c) are fitted on both ends of the rotor shaft (9a) to seal of the stage (9b). These sealing rings are mounted on exchangeable shaft sleeves (9d, 9e) together with the back up mechanical seals (9f). A further shaft sealing ring (9h), seals off the coupling area (9k) on the drive side. The shaft sealing rings (9m) prevent the leakage of oil from the gear box (9n) along the gear shaft (9p).

5. Installation

5.1 Mechanical Installation

5.1.1 Mounting (see data sheets D111 + D117)

Pumps that have reached operating temperature may have a surface temperature of more than 70°C depending on a set temperature at the thermostat. Especially the cooling water jacket might be very hot. WARNING! Do Not Touch.

The VWZ is vibration free so a special foundation fastening is not necessary. When positioning the pump, it is important to ensure that it is mounted horizontally and that there is easy access for routine checking of instruments, topping up of oil and water systems and for repair work on the motor pump. A clearance of 0.5 m should be allowed to the nearest wall to ensure free entry (**E**) and exhaust of the cooling air (**F**). The ambient temperature where the pump is installed should not exceed 40°C.

Further we recommend a clearance of approx. 0.3 m from motor and approx. 0.6 m to the nearest wall for maintenance.

The VWZ pumps can only be operated reliably if they are installed horizontally.

For operating and installation follow any relevant national standards that are in operation.

5.1.2 Suction Side (see data sheets D111 + D117)

The suction pipework should be connected at (A) (standard ISO-Flange). This suction line should be as short as possible, but if it is more than 5 m, than a larger diameter than that of the pump flange should be used. The pipe layout should be such that there is no strain on the pump, if necessary use flexible section. Appropriate separators should be fitted to protect the pump from suction of solid particles and liquids (see accessories).

Solid particles of more than 5 µm and liquid slugs are able to destroy the compressor stages.

5.1.3 Exhaust (see data sheets D111 + D117)

If an oil mist separator is fitted the exhaust pipework is connected at (**B**). If an oil mist separator is not required then the pipework is connected directly at **B**. In this case the pipework should be laid so that it drains away from the pump. If it is necessary for the exhaust pipework to rise, then a catchpot should be fitted as near to the pump as possible, to collect condensate. This pot should have drainage point of a diameter of at least $\frac{1}{2}$ ". It is also advisable to fit a level switch below the pump exhaust level to operate an automatic drain valve or a shut down sequence so that a build of condensate which could flow back into the pump is prevented.

The exhaust resistance within the pipework should not exceed 0.3 bar overpressure.

5.2 Electrical Installation

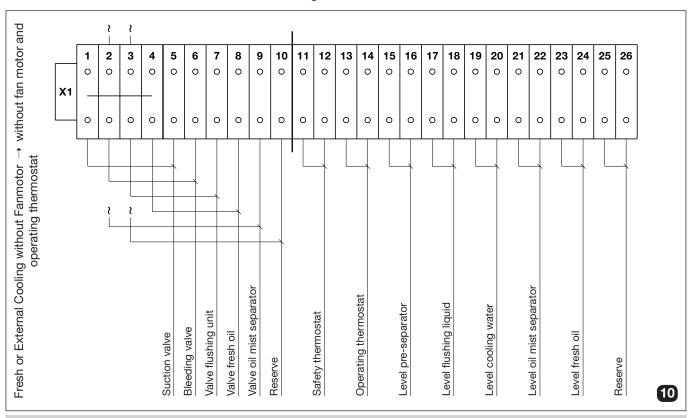
5.2.1 General (see data sheets D111 + D117)

The electrical data can be found on the data plate (**N**) or the motor data plate. The motors correspond to DIN/VDE0530 and have IP54 protection and insulation class B or F. The connection diagram can be found in the terminal box on the motor. Check the electrical data of the motor and the control gear for compatibility with your available supply (voltage, frequency, permissible current etc.).

Connect the motor to the incoming supply. It is advisable to use thermal overload motor starters to protect the motor and wiring. All cabling used on starters should be secured with good quality cable clamps.

We recommend that motor starters should be used that are fitted with a time delayed trip resulting from running beyond the amperage setting. When the unit is started cold overamperage may occur for a short time.

The electrical installation must only be carried out by a qualified electrician under the observance of EN 60204. The main switch must be provided by the operator.


5.2.2 Approximate values for setting motor overload protection

The approximate values for setting motor overload protection should be obtained from the motor manufacturer or motor nameplate.

5.2.3 Electrical connections for the motor and control equipment

All electrical connections for the motor and control equipment are located in the terminal box. Each connection terminal is numbered and these correspond as designated for each control item (as shown in the circuit diagram fig. 10). If any work is carried out then the re-connection should be in accordance with this numbering system. Problems with function can be prevented and faults are easier to find.

5.2.4 Terminal Box Connections Closed Circuit Cooling

6. Normal Operation

6.1 Cooling Liquid

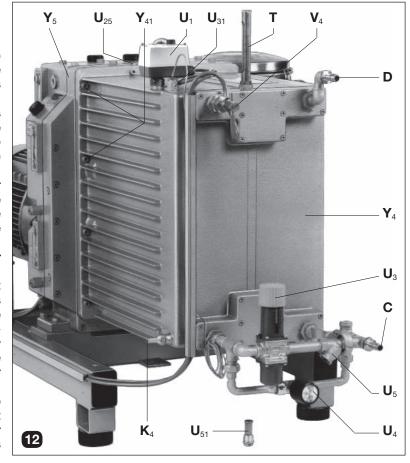
6.1.1 Fresh or External Cooling (fig. 12)

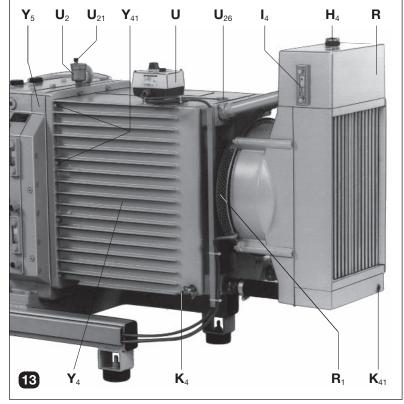
For starting-up the pump (VWZ 102 - VWZ 402 (14)) first the water supply has to be connected to the hose connection point (\mathbf{C}). The water jacket (\mathbf{Y}_4) is filled by pressing the spring loaded priming valve (\mathbf{U}_4). This valve must be depressed until the water flows from the hose outlet (\mathbf{D}). The outlet hose may then be connected. If rigid pipework has been connected to the inlet and outlet points, then the bleed plug (\mathbf{U}_{25}) should be loosened to allow the air to escape during the priming operation and to ensure that the water jacket is filled. This plug should be closed when the water starts to seep from it. The water outlet pipe connected to outlet (\mathbf{D}) should exert no back pressure on the water jacket (\mathbf{Y}_4).

Cooling liquid pressure higher than 0.3 bar causes cracking of the water jacket.

The flow of cooling water through the jacket is controlled by the thermostatic valve (\mathbf{U}_3) and its sensor (\mathbf{U}_{31}) which can be set to operate in the range 50°C-90°C. The set temperature, which is chosen according to the process conditions, will be constantly maintained by the system and can be read off on the thermometer (\mathbf{T}) at the top of the water jacket. If for any reason the temperature should rise above this, the high temperature cut-out (\mathbf{U}_1) will shut the pump down at a temperature of 90°C. This temperature is set in our works and should not be adjusted. If a higher temperature is required to suit process conditions please contact the manufacturer.

In order to keep the thermostatic valve clean a dirt filter (\mathbf{U}_3) is fitted. This must be cleaned periodically, depending on the water quality. To do this unscrew the nut (\mathbf{U}_{51}) and clean the element.


6.1.2 Closed Circuit Cooling (fig. 13)


For starting-up the pump (VWZ 102 - VWZ 402 (13)): The recommended coolant is a 50% antifreeze mix which is poured into the heat exchanger at point (\mathbf{H}_4) to a level midway up the upper sight glass (\mathbf{I}_4). The filling should not take place under pressure and the antifreeze should be well mixed beforehand. The quantity required is shown on the data sheet D 117.

The coolant can be drained by opening the drain cock (\mathbf{K}_4) on the water jacket (\mathbf{Y}_4) after removing the vent plug (\mathbf{K}_{41}) at the cooler (\mathbf{R}) . To ensure complete filling the bleed plug (\mathbf{U}_{26}) should be loosened.

6.1.3 Cooling Liquid Control (fig. 12 and 13)

The safety thermostat (\mathbf{U}_1) controls the temperature of the coolant at the pump (fresh or external cooling). When the pump is running, the safety- and operating temperature thermostat (\mathbf{U}) controls the switching on and off the axial fan (\mathbf{R}_1) to maintain the pump at a constant set temperature. When the pump is operating a slight pressure (approx. 0,3 bar) builds up in the cooling system. The safety valve (\mathbf{H}_4) prevents this pressure rising any further. Any air bubbles which have formed during first filling or re-filling can escape through the bleed valve (\mathbf{U}_2). For this to operate the cap (\mathbf{U}_{21}) on top of the valve should be unscrewed 2 to 3 turns.

If the location of the pump is such that there is a danger of freezing, then appropriate measures should be taken for both fresh cooling and closed circuit cooling. The operating temperature can be set at according to process requirements between 50° and 80°C. If however, the operating temperature should continue to rise, the high temperature thermostat will shut down the pump at a temperature of 90°C. If a higher temperature is required to suit process requirements, please contact the manufacturer.

6.2 Oil Lubrication (see data sheets D111 + D117)

The pumps are despatched with the oil tanks (except fresh oil) filled. However it is advisable to check the oil levels.

Sight glass: Fresh oil (I), LP-bearing (I₂), HP-bearing (I₂), gearbox (I₃). If oil level is low, please refill. Oil filling points: Fresh oil (H), LP-bearing (H₁), HPbearing (H₂), gearbox (H₃). An oil level switch (V) is fitted in the fresh oil tank as standard. This automatically stops the pump if the minimum oil level is reached (depending on actual site control installation). The pump can be restarted after refilling. We recommend the following oil brands: Bechem VBL 100, BP Energol RC 100, Esso rotary oil 100, Mobil vacuum pump oil heavy, Shell Tellus oil C 100 or Aral Motanol HK 100. Other lubricants should only be used after reference to the manufacturer. The bearing and gear oil should be completely changed once a year. Under extrem conditions we recommend earlier maintenance if necessary. Oil type plate (M), oil drain LP-stage (K₁) and HP-stage (K_2). The gearbox oil should be changed after approx. 3000 operating hours (\mathbf{K}_3).

Recommendations for cheking the fresh oil consumption: Fill up fresh oil to the upper level indicated on the sight glass (I). Operate machine for a period of 10 hours. Refill fresh oil again to the upper level.

Oil consumption = Refill / 10 hr

Old and used oil must be disposed of corresponding with the rel- $\stackrel{ extstyle \prime}{=}$ evant health, safety and environmental laws.

If the oil brand is changed. The old oil must be drained completely from the tank and the oil cooler.

6.3 Oil metering pump

The oil metering pump is set to necessary output at the factory.

This rate can only be changed on request to our Company.

This rate can only be changed on request to our Company by turning the regulating screw. The capacity will be changed about ¹/₃ per revolution. Reduce oil counter-clockwise, increase oil clockwise.

Before first start-up of the pump, the oil flow should be primed by giving the oil pump handle approximately 150 - 200 turns. This procedure should also be carried out if the pump has been stationary for a week or more, or after repairs to the gear unit or change of stages or after cleaning of the oil pump or the oil lines.

Oil Consumption for VWZ and VPA (VWZ + Roots booster): I/h

VWZ	102	162	252	402
50 Hz	0,130	0,130	0,162	0,162
60 Hz	0,156	0,156	0,194	0,194

VPA	102	162	252	402
50 Hz	0,195	0,195	0,234	0,243
60 Hz	0,234	0,234	0,291	0,291

6.4 Initial Operation

Warning -> Start-up with pipework

At start-up, severe damage may occur if there is debris in the pipework.

We therefore recommend a vacuum tight inlet filter of 5 micron rating is installed for start-up.

Start the pump momentarily to check the direction of rotation (arrow ($\mathbf{O} \rightarrow D111 + D117$)). As an option the motor coupling can be fitted with a unidirectional free-wheel device to prevent the vacuum pump rotating in the event of incorrect motor rota-

Important: When the pump is handling moist or aggressive media, it should be run before and after the process operation with a closed process vacuum valve, but with an open bleed valve (optional item). This pre and post running should take 20 to 30 minutes. The pre run is to bring the pump up to operating temperature and therefore prevent condensation of vapours inside the pump. The post run is to purge the pump of residual media and to leave the internals with a film of clean oil for the period it will be stationary.

7. Maintenance

When maintaining these units and having such situations where personnel could be hurt by moving parts or by live electrical parts the pump must be isolated by totally disconnecting the electrical supply. It is imperative that the unit cannot be re-started during the maintenance operation.

Do not maintain a pump that is at its normal operating temperature as there is a danger from hot parts or hot lubricant.

Hazardous substances must be removed before serving. Maintenance personnel should be informed regarding the presence of anything harmful and also be informed about all relevant safety regulations before carrying out any work.

7.1 Oil Metering Pump

The lubrication oil pump requires no special attention during operation. Care should be taken to ensure that there is always sufficient oil in the reservoir so that air is not pumped into the oil lines. If this should occur the oil lines must be dis-connected and the pump hand operated to remove all air bubbles from the lines before re-connecting.

At least once a year the oil pump should be cleaned out by pumping petroleum through it. At the same time the oil reservoir should be flushed out. This cleaning is also recommended if the pump has been stored for a long time after delivery before putting into operation as hard deposits may have formed which could adversely affect the pump performance.

7.2 Oil Mist Separator (Optional Extra Exhaust Side)

The oil mist separator which is mounted directly on the exhaust flange of the vacuum pump is a 2-stage device: Separation:

- → liquid droplets in the condensate collector
- → aerosol in the filter elements

The oil mist separators are available in 2 material variations for the chemical and pharmaceutical industries:

→ Stainless steel: 1.4541 → glass

The filter candles are made of teflon or borosilicate glass and hence are fully resistant to solvents and largely resistant to acids.

Please note: If the material being handled is subject to polymerisation or resin hardening it is not advisable to use this type of oil mist separator as the filter elements would quickly become blocked and would require frequent changing.

7.2.1 Oil Mist Separator Maintenance (fig. 14)

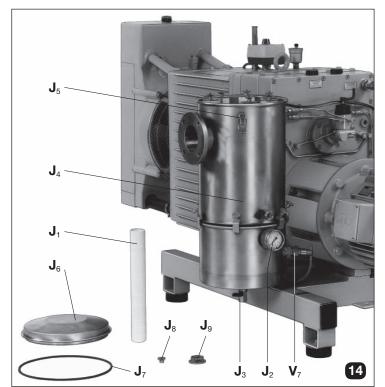
If the backpressure on the vacuum pump as shown on the gauge (J_2) rises to 0.5 to 0.6 bar then the filter candles (J_1) should be changed and the vessel (J_4) cleaned out.

To change filter candles: after releasing the catches (J_5) the oil mist separator cover (J_6) and o-ring (J_7) can be removed. Remove the thumb wheels (J_8) and take off the locating plate (J_9). Remove the filter candles (J_1) and before replacing the o-ring (J_7) check it with particular attention. During normal operation of the pump it is important to ensure regular draining of the condensate and oil mixture from the base of the separator and this can be arranged for manual or automatic operation. A level switch (V_7) is fitted as standard and this will shut down the pump when the exhaust condensate level becomes too high. For the drain cock (J_3) as shown a solenoid valve is available for automatic drain of oil/condensate as an optional extra.

8. Trouble Shooting

8.1 Pump Overload

- 1. Check oil level in gear box (only when pump is stopped), if necessary drain down to normal.
- Measure back pressure in exhaust lines, if necessary change filter elements.
- 3. Check ease of rotation of gearbox and pumpstages:


 → remove motor and turn coupling.


8.2 Drop Off of Vacuum (pict. 15)

- Measure the vacuum directly at the vacuum connection (A), if necessary change mesh (A₁).
- Measure the back pressure on the pump exhaust (B₁).
 It should not exceed 0.3 bar.
- If the ultimate vacuum was not achieved in the first test.
- remove protection mesh (\mathbf{A}_1) behind suction flange (\mathbf{X}_1) and clean.
- remove inter-stage relief valve (**Q**) at (**Q**₁) and check operation as well as position of the valve.
- Measure the vacuum between the stages using tapping (Q₂). If the same reading is obtained at suction flange (A) and (Q₂) then the LP stage is not functioning. If the reading at (Q₂) is closer to atmospheric pressure, then the HP stage is not functioning.

8.3 High Oil Consumption

- In case of bearing oil loss check the shaft seals between bearing and compressor stage and change (see page 14)
- High fresh oil consumption, check the non-return valves in the oil lines for correct function and replace. Disconnect oil lines
 and check if they are under vacuum.

REPAIR INSTRUCTIONS

1. Removal and Re-assembly of Water

Jacket (fig. 12, 13 and data sheets D111+ D117)

- Switch off VWZ and vent to atmospheric pressure
- Open plug (\mathbf{U}_{25}) or (\mathbf{U}_{26}).
- · Drain off cooling liquid:
- VWZ (14) → drain cock (K₄).
- VWZ (13) → drain cock (K₄). Drainage is completed by opening plug (K41) at the base of the radiator (R).
- · Disconnect the cables of following devices at the terminal box (G):
- VWZ (14) \rightarrow thermostat (\mathbf{U}_1) and level switch (V_4) .
- VWZ (13) \rightarrow thermostat (**U**), level switch (**V**₄) and fan (\mathbf{R}_1) .
- Disconnection is unnecessary if you have a cable conduit and open the cover.
- Support the water jacket (Y₄) by slings from a crane.
- Remove the allen bolts (Y₄₁) with an extended allen key (approx. 1 m).
- Separate the water jacket (Y₄) from the connection cover (Y₅) with a crane and place on wooden blocks.
- Refit the water jacket in the reverse order.
- Use new sealing rings if necessary.
- Fill with coolant at (\mathbf{H}_4) .

2. Changing LP and HP Stages (fig. 20)

· Removal and Refitting of LP and HP stages are the same.

2.1 Removal of Stages

- Remove water jacket (see above).
- Drain bearing oil:
- LP Stage at (K₁) / HP Stage at (K₂).
- Support stage (S₁) or (S₂) by slings from crane.
- Remove allen bolts (S₁₁) or (S₂₁).
- · With gentle rocking movements, withdraw stage from flange complete with half coupling.

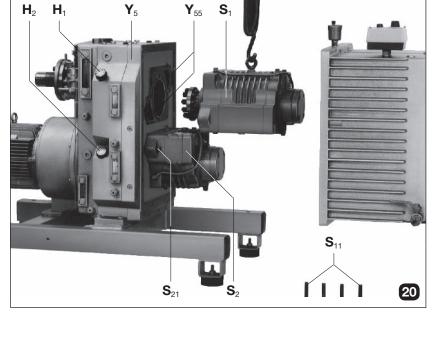
2.2 Refitting of Stages

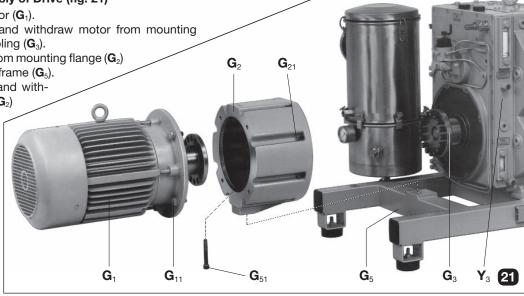
- Before refitting, clean out the connecting passage ways (Y₅₅) in the connection cover (Y₅).
- When not replacing the stages, the ports (\$515 fig. 27) must be cleaned, taking care that no dirt enters the compression chambers (S₁₆ fig. 27).
- Lightly smear both faces of gasket (30) with anti-seize, non-setting universal jointing compound (see E117/1).
- · Refitting is reverse of removal.
- · Use new sealing rings if necessary.
- Fill bearing oil tanks:
- LP stage at (H₁) / HP stage at (H₂).

· Refit water jacket (see above)

3. Removal and Reassembly of Drive (fig. 21)

• Disconnect cable of motor (G₁).

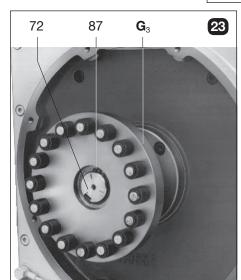

• Remove hex-nuts (G₁₁) and withdraw motor from mounting flange (\mathbf{G}_2) with half coupling (\mathbf{G}_3).

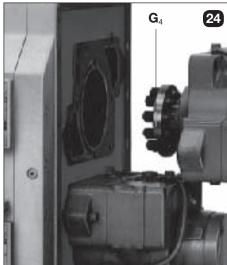

Remove hex-nuts (\mathbf{G}_{51}) from mounting flange (\mathbf{G}_{2}) and separate from base frame (G_5).

Remove hex-nuts (G₂₁) and withdraw mounting flange (G2) from gearbox housing

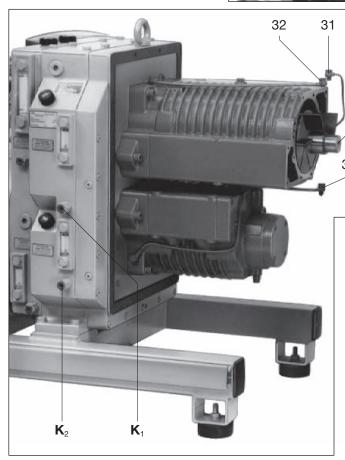
 (\mathbf{Y}_3) . The half coupling (G₃) can now easily be reached.

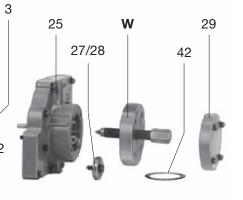
Refit in reverse order.


4. Changing Coupling Rubbers and Pins

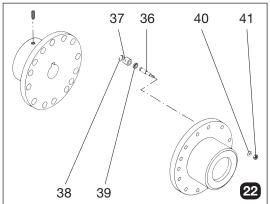

4.1 On Drive Motor (fig. 22 and 23)

- Removal and reassembly of drive (see page 12).
- Remove circlips (38) and pull off coupling rubbers (37), replace if necessary.
- Remove circlips (87).
- Withdraw half coupling (**G**₃) from shaft (72) with a puller.
- Remove nuts (41) and spacer (40).
- Withdraw coupling pin (36) and replace, if necessary.
- Reassemble in reverse order. (see also E 117/2)


4.2 On Stages (fig. 22 and 24)


- Removal and reassembly of water jacket (see page 12).
- Removal and refitting stages (see page 12).
- Remove circlips (38) at half coupling (G₄) and pull off coupling rubber (37), replace if necessary.
- Remove nuts (41) and spacer (40).
- Withdraw coupling pin (36) and replace, if necessary.
- Reassemble in reverse order. (see also E 117/1)

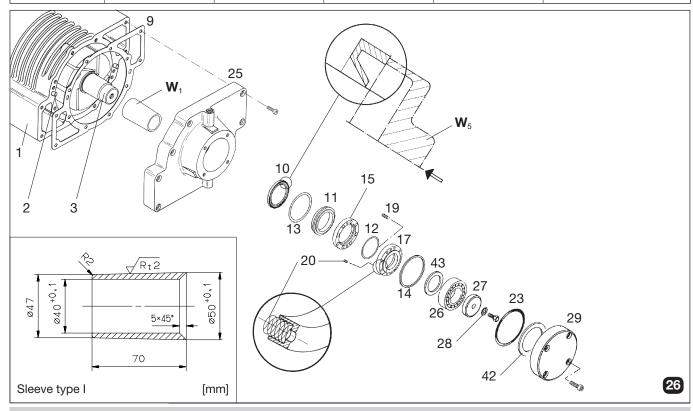
25



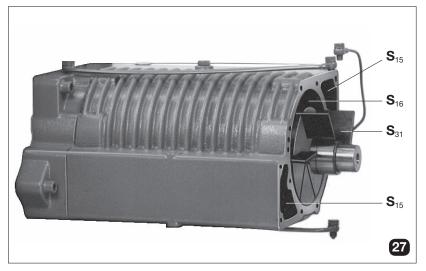
5. Repairs to stages, Non-Drive End (B)

5.1 Removal of Bearings and Seals (fig. 25)

- Removal of water jacket (see page 12).
- Drain bearing oil
- LP Stage at (K₁) / HP Stage at (K₂)
- Disconnect oil lines (31,32,32) or (57,58,58) from cover B (25) or (55). Bend oil lines away sufficiently to allow dis-assembly of the cover B.
- Remove bearing cover (29) and put spacer (42) at your side (if existing).
- Separate screw with spacer (27/28) from the shaft end (3) or (52).
- Unscrew the allen screws on cover B (25) or (55).
- Screw the puller (W) to the cover B.
- Separate the cover B with bearing and seals from the shaft end (3) or (52).


(see also E117/1 and E117/4)

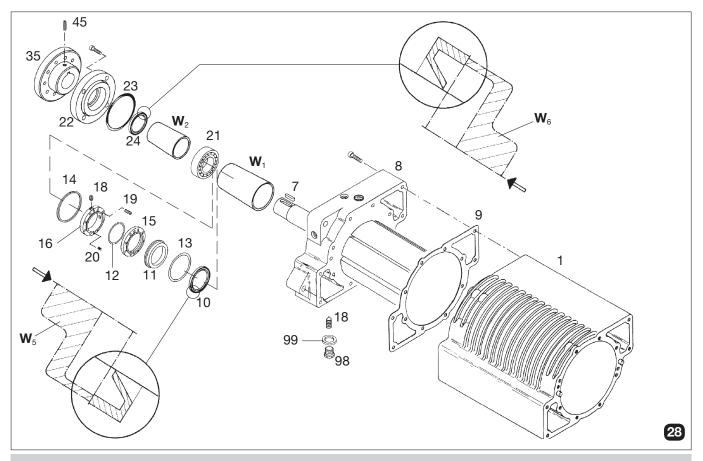
5.2 Reassembly of Bearings and Seals (fig. 26)


- Before reassembly all parts should be removed from the end cover (25) or (55). Check parts (Pos. 10, 11, 12, 13, 14, 15, 17, 23) and if necessary replace.
- Fit new oil seal (10) with assembly device (W₅) into end cover (sealing lip see fig. 26).
- Place sleeve type I (W₁) on shaft end (3) or (52) and lightly oil.
- Measure axial clearance between end cover and shaft according to the old seals (9) or (59) or calculate (length of housing + seals (9 or 59) rotor = clearance). The axial clearance is set at works and fixed with dowels. If major work is necessary on the housing, the tolerance given can be achieved by adjusting and pinning of housing and end cover.
- Important! To ensure correct and safe operation of the pump the data shown in the schedule below must be observed. Please note different sizes of packing (9) or (59).
- Coat both sides of gasket (9) or (59) with anti-seize non-setting universal jointing material and position on end face of cylinder housing (1) or (51).
- Push end cover over the dowels (2) and screw down loosely.
- Place stationary face (11) together with o-ring (13) on the sleeve type I (W₁) and insert in end cover (25) or (55).
- Slightly oil surface of stationary face (11) and sliding ring (15).
- Insert sliding ring (15) together with o-ring (12) to the stationary face (11) and pull off sleeve type I (W₁).
- Slightly oil spring (20) and insert in transport ring B (17).
- Place the transport ring B (17) over the shaft end, insert springs (20) and sleeves (19) in the holes of the sliding ring (15).
- Place spacer (43) if available next to transport ring B (17).
- Fit O-ring (14) and bearing (26).
- Screw washer (27) with screw and spring shim (28) at the shaft end (3) or (52).
- Place spacer (42), if required, next to bearing (26).
- Bearing cover (29) with O-ring (23) slip carefully over the shaft and tighten down.
- · Tighten end cover and re-connect oil lines.
- Re-fitting of stages and water jacket (see page 12).

	Clearance data of stages [mm]						
	Axial clearance				Radial clearance		
VWZ	LP-stage		HP-stage		(between rotor and		
	B-side Fix clear	Total clearance	B-side Fix clear	Total clearance	housing)		
102		0.25		0.25	0.10		
162	0.05	0.35	0.05	0.25	0.12		
252	0.05	0.50	0.05	0.30	0.16		
402		0.70		0.55	0.16		

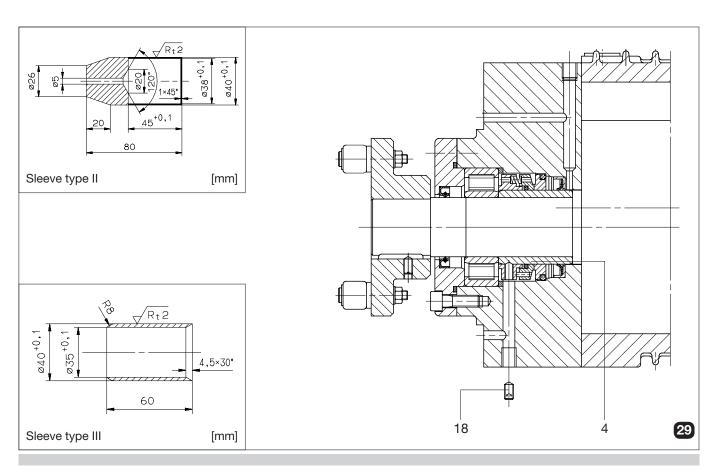
6. Changing Blades (fig. 27)

- Removal of water jacket and non-drive end B of compressor stage (see page 12 and 13)
- Withdraw blades (S₃₁) and examine.
- Important! If required, replace blades only in sets
- Insert blades in rotor slots (the bevelled side of the blades have to be at the rotor surface).
- Slightly oil blades before assembly. Blades should move easily in rotor slots.
- Re-assembly of non-drive end B of compressor stage and water jacket (see page 12 and 13).



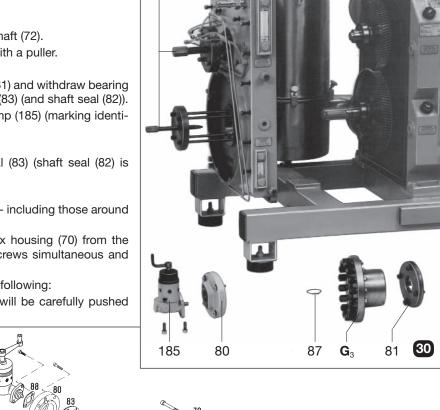
7. Repairs to stages, Drive End A

• HP and LP stages are constructed similarly.

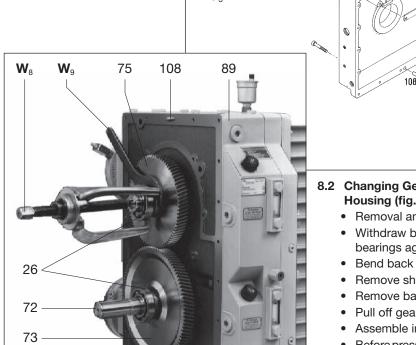

7.1 Removal of Bearings and Seals (see fig. 28 and E 117/1, E 117/4)

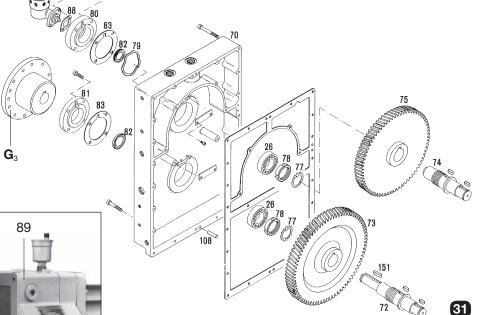
- Removal of water jacket and compressor stage (see page 12).
- Disconnect oil lines on end cover A (8) or (54) and bend oil lines away sufficiently to allow dis-assembly of the cover.
- Remove threaded pin (45) from the coupling (35) and pull coupling from shaft end using a puller.
- Remove screws from bearing cover (22) and remove bearing cover with spacer (7).
- Unscrew plug (98) with sealing ring (99).
- Remove threaded pin (18) with allen key (3 mm).
- Remove screws in the end cover (8) or (54).
- Using a puller, free the end cover with the seals and the outer ring (21) from shaft end (3) or (52).

7.2 Re-assembly of Bearings and Seals (see fig. 28 and 29)


- Before re-assembly all parts should be removed from the end cover (25) or (55). Check parts (Pos. 10, 11, 12, 13, 14, 15, 16) and if necessary replace.
- Fit new oil seal (10) with assembly device (W₅) in end cover (sealing lip see fig. 28).
- Place sleeve type I (W₁) on shaft end lightly oil.
- Coat both sides of gasket (9) or (59) with anti-seize non-setting universal jointing material and position on end face of cylinder housing (1) or (51).
- Push end cover over the dowels and screw down loosel,
- Place stationary face (11) together with O-ring (13) on the sleeve type I (W₁) and insert in end cover (25) or (55).
- Slightly oil surface of stationary face (11) and sliding ring (15).
- Insert sliding ring (15) together with O-ring (12) to the stationary face (11).
- Pull off sleeve type I (W₁).
- Tighten end cover (25) or (55).
- Slightly oil spring (20) and insert in transport ring A (16).
- Place the transport ring A (16) over the shaft end, insert the springs (20) and sleeves (19) in the holes of the sliding ring (15).
- Transport ring A (16) should be set so that the end of the threaded pin (18) will lock the transport ring A (16) in the location on the inner ring (4) placed on the shaft end (see fig. 29)
- Fit threaded pin (18) and fix with screw locking material.
- Place outer ring with cylinder roll (21) in the holes of the end cover.
- Place sleeve type II (W₂) to shaft end and slightly oil.
- Fit new oil seal (24) with assembly device (W₆) into bearing cover (22) (sealing lip see fig. 28).
- Pull bearing cover (22) with oil shaft seal (24) and O-ring (23) over the sleeve type II (W₂).
- Centre bearing cover (22) and screw down.
- Pull off sleeve II (W₂).
- Place key (7).
- Place half coupling (35) and secure with threaded pin (45).
- Re-connect oil lines.
- Re-fitting of stages and water jacket (see page 12).

8. Repairs to Gearbox


8.1 Removal and Re-assembly of Gearbox (fig. 30 and 31)


- Drain oil (see data sheets D111 + D117).
- Fresh oil at (K) / Bearing oil LP at (K₁) and HP at (K₂)
- Gearbox oil at (K₃)
- · Remove drive motor (see page 12).
- Remove locking ring (87) on the drive shaft (72).
- Pull coupling (G₃) from the drive shaft with a puller.
- Take out key (151).
- Remove allen screws in bearing cover (81) and withdraw bearing cover from drive shaft (72) with sealing (83) (and shaft seal (82)).
- Dis-connect all oil lines from the oil pump (185) (marking identification).
- Remove oil pump (185) with seal (88).
- Remove oil pump flange (80) with seal (83) (shaft seal (82) is located in the flange (80)).
- Remove spring shim (79).
- Unscrew all screws in the gear box (70) including those around the coupling.
- With the puller (W₇) loosen the gearbox housing (70) from the locating pins (108) while turning the screws simultaneous and remove it.
- · Re-assembly in reverse order. Note the following:
- Bearing cover (80) and shaft seal (82) will be carefully pushed without sleeve along the shaft.
- Bearing cover (81) and shaft seal (82) will be mounted with assembly sleeve type III (W₃).
- Re-assembly of drive (see page 12).
- Refill with oil (see data sheets D111 + D117).
- Fresh oil at (H)
- Bearing oil LP at (H₁) and HP at (H₂)
- Gearbox oil at (H₃)

W₇

70

8.2 Changing Gear Wheels and Ball Bearings in Gearbox Housing (fig. 31 and 32)

- Removal and Re-assembly of gearbox.
- Withdraw both bearings (26) with a puller (W₈) (do not use the bearings again).
- Bend back locking tab (77).
- Remove shaft nut (78) with a C spanner (W₉).
- Remove back locking tab (77).
- Pull off gear wheels (73) and (75).
- Assemble in reverse order.
- Before pressing on bearing (26) their inner ring should be warmed to 100°C.

32

8.3 Changing Bearings, Shaft Seals and Seals in Gearbox Connection housing (fig. 33).

- Removal and re-assembly of water jacket and compressor stage (see page 12).
- Removal and re-assembly of gearbox (see page 17).
- Remove the circlip (87) on the drive shaft (72) and on the gear shaft (74).
- Remove the coupling (86).
- Remove shaft key (7).
- Remove the allen screws in the bearing cover (81).
- Loosen and remove the bearing cover (81) with two allen screws (M8) together with the seal (83) and shaft sealing (82).
- Remove the spacer ring (79).
- Press the drive shaft (72) with bearing (26) and gear shaft (74) with bearing (26) out of the intermediate housing in the drive direction, using a sleeve on the outer bearing ring.
- Pull off and change ball bearings (26).
- The assembly is in the reverse order.
- Please note the following:
- Before pressing on bearing (26) their inner ring should be warmed to 100°C.
- When fitting the bearing cover (81) with the shaft seals (82) an assembly sleeve type II (**W**₂) should be used.

9. Other repairs

9.1 Cleaning the Suction and Exhaust Ports in Connection Housing (fig. 34)

Switch off pump and bleed to atmospheric pressure.

· Remove the pipe work.

Remove the separator (Z).

• Remove the flange (103) from the suction channel (Y₆₅) (note seals (104)).

Remove the hemispherical mesh (118) and clean (solvent).

 Both port areas (Y₆₅ and Y₆₆) can be cleaned through the openings in the intermediate housing (89). (Please take care, that no dirt enters the pump).

Assembly is in the reverse order.

9.2 Changing the Pressure Relief Valve (fig. 34)

- · Remove allen screws in the valve (400).
- Carefully remove the valve (400) straight from the intermediate housing.
- Check all parts and the valve seat in the connection housing (89). If necessary, regrind the valve seat.
- Before re-assembly check that the valve (404) slides easily in the valve sleeve (401).
- Assembly is in the reverse order.

10 Instructions for storing fresh oil lubricated rotary vane vacuum pumps

Introduction

Start-up of all pumps delivered by Rietschle should be made within 3 months. If this is not possible, please observe the following details, the guarantee given by Rietschle may be invalidated if not followed.

a. Storing of pumps

The store room for the pumps must be dry and free of all corrosive materials. The ambient temperature should be constant and above 10°C.

b. Condition of Stored Pumps

The suction and discharge ports of the pumps should be sealed with blank flanges. All lubricating and sealing oil reservoirs should be filled, in accordance with the instruction manual.

c. Maintenance during Storage

The pumps should be operated once a month for about 2 hours to prevent any kind of corrosion within the pump. Please pay attention to the fact, that the blank flange from the discharge side is to be removed before operation and installed again afterwards. The blank flange of the suction side should not be removed, since end vacuum should be reached.

d. Setting Pumps into Operation

A technical service made by Rietschle will be necessary for all pumps stored longer than 3 months. You will be responsible for the costs of the inspection and test run. Further, all costs occurring from improper storage or handling will be charged.